11 FAKULTAT FUR INFORMATIK M
%?%i der Technischen Universitat MUnchen

Lehrstuhl VIII — Rechnerstruktur/-architektur — Prof. Dr. E. Jessen

Concepts for the Implementation of
Tutorial Systems in HTML and Java

Diplomarbeit

Reinhard Schaffner

Aufgabensteller: Univ.-Prof. Dr.-Ing. Eike Jessen
Betreuer: Dr. Michael Greiner*

Abgabedatum: 15. Mai 1998

* Neue Adresse seit 01. Januar 1998:
Siemens AG, Zentralabteilung Technik ZT PP 2S, Otto-Hahn-Ring 6, D-81730 Miinchen

Hiermit versichere ich, daB ich diese Diplomarbeit selbstandig verfaBt und nur die angegebenen Quellen und
Hilfsmittel verwendet habe.

Reinhard Schaffner
Minchen, den 15. Mai 1998.

Abstract

The main goal of this thesis is to examine various techniques for implementing interactive
tutorial systems in the world—wide web. I commence with an overview of psychological and
pedagogical issues concerned with the design of tutorial systems in general. In particular I
discuss the ACT memory model proposed by J. R. Anderson and a scheme for classifying
various types of educational software. I continue by examining the main building blocks
of intelligent tutoring systems. In addition I discuss the use of hypertext, and cooperative
working tools, the design of exercises, and user adaption.

During the growth of the world-wide web various techniques have been established to allow
distance education and user interaction. This discussion will focus on methods which are
suitable for implementing tutorial systems and will conclude by rating and enhancing the
methods introduced. This thesis involved the development of a prototypal tutorial system
using JavaScript and Cookies. A general introduction to the system is given and the design
issues of the implementation and problems encountered in the development are discussed.
The thesis concludes with an overview of the possible future of tutorial systems in the
world—wide web.

Contents \'
Contents

1 Preface 1

1.1 Acknowledgementso e 1

1.2 Introduction e e e e e 1

1.2.1 Objective of the Thesis 2

1.2.2 Limitations e 3

1.23 Caveats e e e e e 3

2 Theoretical Background 4

2.1 Psychological Backgroundo 4

211 ACT . . . e 4

2.1.2 Problem Solving 6

2.1.3 Motivation, Feedback, and Adaption 8

2.1.4 Didactics 9

2.1.5 Limitations 10

2.2 Classification of Educational Software o ... 10

2.2.1 Drill-and-Practice and CAI Programs 11

2.2.2 Tutoring Systems e 11

2.2.3 Hypertext and Hypermedia Systems 12

2.2.4 Simulations L e 14

2.2.5 Cognitive Tools e 15

2.2.6 Conclusion 15

2.3 General Structure of Intelligent Tutoring Systems 16

2.3.1 Components of Intelligent Tutoring Systems 16

2.3.2 Example: Syproso 19

3 Techniques 20

3.1 Hypertext Markup Language Extensions 20

3.1.1 Netscape’s Layers e 21

3.1.2 Cascading Style Sheets 22

3.1.3 Hypertext Markup Language Version 4.0 24

3.1.4 Toward A New Educational Environment 25

315 Discussion 26

3.2 Knowledge-Based Hypertext Transfer Protocol Server 27

321 Common Lisp L 28

3.2.2 Hypertext Transfer Protocol 29

Vi Contents
3.2.3 Common Lisp Hypertext Transfer Protocol Server 30
3.2.4 Example: Episodic Learner 31
3.2.5 Discussion L e e e e e 32

3.3 Authoring System and Courseware Plug-In 33
3.3.1 Plug-InBasics e 33
3.3.2 Authoring Systems and Courseware 35

3.3.2.1 Example: Macromedia Director, AuthorWare, and Shockwave 35
3.3.2.2 Example: Asymetrix ToolBook IT and Neuron 37
3.3.3 Discussion e e 38

3.4 Common Gateway Interface 39
3.4.1 Common Gateway Interface Basics 39
3.4.2 Common Gateway Interface in Education 41

3.4.2.1 Example: Virtual Seminar Koalah 41
3.4.2.2 Example: WTgX-Tutorial 42
3.4.2.3 Example: Plan and User Sensitive Help 43
3.4.3 Discussion e e 44

3.5 JavaScript and Cookies e 45
3.5.1 JavaScript Basics 46
3.5.2 Cookies 48
3.5.3 LiveConnect e e 49
3.50.4 Discussion e e e e e 50

3.6 Java ... e e e 51
3.6.1 JavaBasics 592
3.6.2 Examples for Tutorial Systems in Java 55

3.6.2.1 Example: PUSH Graphical User Interface 55
3.6.2.2 Example: Powersim Simulations 56
3.6.3 Discussion e e 56

3.7 Conclusion e 57

4 Implementation 59

4.1 Tootsie. . . . o o e e e e e e e e 99
4.1.1 Tootsie Basics e e 59

4.1.1.1 Tootsie System Components 59
4.1.1.2 Classification of Tootsie 59
4.1.1.3 TImplementational Technique 61
4.1.2 OVErview oo e e e e 62

4.2 Tootsie Development Systemo 62

4.2.1 Preparations e 62
4.2.1.1 Step 1: Technique 62
4.2.1.2 Step 2: EXercises oo 63

4.2.1.3 Step 3: Resources 63

Contents vii
4214 Step 4: Templates 64

4.2.2 Toolset System Architecture L o 64

4.2.3 Generation e e 64

4231 Step 1: Glossary o 64

4.2.3.2 Step 2: Exercises 65

4233 Step3:Links oL Lo 66

4.2.3.4 Step 4: Link Reference o 67

4.2.3.5 Step 5: Table of Contents 67

4.2.4 Adaption 68

4.2.4.1 Adaption Variables L 68

4.2.4.2 Adaption Procedure 70

4.2.5 Flexibility e 70

4251 Events 70

4.25.2 EXercises 71

4.3 Tootsie Tutorial System L 71
4.3.1 User Interface e 72

4.3.1.1 General 73

4312 Menultems. e 73

4.3.1.3 Cookie Cutter e 74

4.3.14 Exercise Wizard 75

4.3.2 Cooperative Work Area 75

4321 Chat e 76

4322 NeWS . . .o e 7

4.3.3 System Evaluation e 78

5 Conclusion and Outlook 80
Appendix 83
A Resource Variables 85
B Tutorial System Source Files 90
B.1 Tootsie Development System oL 90
B.1.1 Common Gateway Interface Source Files 90

B.1.2 User Interface and System Files o, 91

B.2 Tootsie Tutorial System L e e 92
B.2.1 User Interface and Work Files 92

B.2.2 Add-On e 93

viii

Contents

C Example for Creating an Exercise

C.1 Generate Glossary
C.2 Generate Exercise
C.3 Generate Links oo
C.4 Generate Table of Contents

D Glossary
E Figures

Bibliography

100

103

Chapter

Preface

1.1 Acknowledgements

I like to express my sincerest thanks to the following people who contributed to this master’s thesis (in
alphabetical order). To all those who are not mentioned personally I say “thank you”, because without
you none of this would have been possible.

e Martin Christa, for solving technical problems and for giving me the opportunity of using his CD—
ROM writer.

e Fredrik Espinoza, for being so kind as to send me his master’s thesis.
e Dr Michael Greiner, for providing this fabulous IATEX—style and supervising my work.
e Karin Hinkel, for the xgrab tool.

e Carol Phillips, for everything. I wish you all the best for your dissertation, and I am looking forward
to receiving a copy of it.

e Kirsten Proske, for her comments and her help in testing the prototypal implementation of the
Tootsie system.

e Roland Sackl, for giving me his master’s thesis and for the information on how to include images
in ATEX documents.

e Thorsten Schmitt, for lending me his master’s thesis and for his INTEX introduction.
e Ed Tyson, for once reading my thesis and giving me feedback. I wish you all the best in your career.

e Christian Wenk and Irmengard Aschauer, for giving advice in regard to didactics and English
grammar.

In addition, T am greatly indepted to Christian Herzog, John C. Mallery, Andrew A. Schaffner, and
Gerhard Weber who kindly answered my questions concerning their research projects.

1.2 Introduction

Since the growth in personal computer use much research and testing has been carried out in the
areas of computer—based training and intelligent tutoring systems, the latter often combined with, or
introduced by, knowledge—based systems. As [REINMANN-ROTHMEIER & MANDL, 1995] state, the use
of electronic media in education has been officially recommended, and so learning with multimedia has
been investigated by educators and psychologists for some time. The introduction of the world—wide
web has greatly increased the interest in providing distance education, fueled mainly by the enormous
media attention given to the technological possibilities. Telecommunications and distant cooperation are
now seen as the key to the future of education and the combining of existing tutorial systems and the
internet would provide a way forward. Research into computer learning networks is still in its infancy

1

2 Introduction [Section 1.2]

but net-based learning systems are advancing and offering new opportunities in learning and teaching
that include multimedia but go much further.

Any lecturer wishing to publish his course on the internet must know how this can be achieved. Compared
with the large number of existing training sites, the number of used techniques is small but finding the
right implementation for a particular tutorial system can be very time—consuming. The questions the
developer must ask himself are:

e What kind of technique will best suit his current needs?

e What are the advantages of each implementation?

What problems may arise?
e Are the components standardised?

e What kind of exercise is he planning and will the student learn the most from it?

Finally, how much time must be invested before training can start and how easily can the imple-
mented system be modified or extended?

To answer all these questions and also gain basic background knowledge of psychology, pedagogy and
tutorial systems in general can require a vast amount of time. This thesis is designed to assist the
developer in answering these questions by providing a summary of the various techniques available and
therefore more of his time can be spent on deciding upon an appropriate course structure and relevant
exercises. To illustrate what can be achieved and where the restrictions lie, a prototypal implementation
of a tutorial system was developed using one of the promising techniques. The system, which has been
called Tootsie', consists of two parts, one, the developer’s toolset, which is used to generate exercise files.
The other is accessed by the student and displays the previously generated exercise files. The toolset is
written in the programming language C, and the developer’s graphical interface is developed using the
common hypertext markup language, HTML, in conjunction with the scripting language, JavaScript.
The tutorial system, which the student sees, also uses HTML and JavaScript. The latter provides a way
to change the contents of a web page dynamically and adapt to the students needs with the help of
persistent client—state information, the so—called Cookies.

The source code of the miscellaneous program, template and user interface files, which amount to more
than 12000 lines of code, is not included in this master’s thesis but may be obtained from the author
without charge. The author disclaims all warranties with regard to that software, including all implied
warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action, arising out of or in connection with the use or
performance of that software. The reader is strongly encouraged to extend the current possibilities of the
software, but he should keep in mind that the current version of Tootsie is a prototypal implementation
whose development process was limited to a six-month period. Therefore in the following chapters
different techniques will be introduced first which may be better suited to the individual developer’s needs.

1.2.1 Objective of the Thesis

This thesis is mainly concerned with a comparison of different techniques used to provide user interaction
and user adaption for web—based systems. Each technique is briefly introduced, and then compared with
other suitable methods. Especially the benefits for educational training are pointed out in the discussion.
Nevertheless the fundamental methods of each technique are specifically introduced, in order to increase
the ability to understand inherent possibilities and limitations, and to acquire knowledge that is important
for an implementation. The main purpose is to help the developer of a tutorial system in making a well-
based and reasonable decision, while considering the advantages and disadvantages arising with a certain
technique.

L Tutorial system for interactive exercises.

[Chapter 1] Preface 3

1.2.2 Limitations

The thesis does not discuss any technical preliminaries for making internet communication
and multimedia applications possible. A general overview of techniques used in networks, such
as compression algorithms and network protocols, can be found in [HEATH, 1996]. The im-
plications on society which arise from the use of modern technologies are also not covered.
[REINMANN-ROTHMEIER & MANDL, 1995] wrote more on this subject and added a detailed ref-
erence list of publications. [REINMANN-ROTHMEIER & MANDL, 1995] also emphasize that humans
must be taught in the use of modern technologies, if those are entering society and affecting education.
Therefore it is important to know what competences are necessary then and how these can be trained. In
this respect I do not intend to replace other forms of learning with the tools and techniques introduced
in this thesis. Traditional textbooks, lectures, and work groups are still vital for education, and their
presentation as well as their intended study goals will certainly benefit from the additional training,
which tutorial systems provide.

1.2.3 Caveats

In the following points I explain how certain terms are used throughout this thesis:

o I will write “he” or “his” when speaking of a single student or system developer. This, of course, is
not intended to exclude female students or system developers.

e The terms “content provider”, “author”, and “system developer” are used interchangeably and
describe a person, who is responsible for the development of a tutorial system.

e If not stated otherwise, the terms “tutorial system”, also abbreviated as “system”, and “educational
software” mean the same. According to the classification in Section 2.2 a “tutoring system” is a
special form of tutorial system in this thesis, but not necessarily in other publications.

Chapter

Theoretical Background

2.1 Psychological Background

2.1.1 ACT

Anderson’s ACT' is regarded as a general theory of cognition, with particular emphasis on skill
acquisition and problem solving. In this chapter I will give a brief overview of ACT and its application
in educational software, especially in the field of “tutoring”, the primary purpose of which is to
assist students in learning the domain of a computer—based course. As references I will use the works
by [ANDERSON ET AL., 1995], [ANDERSON, 1996], [WENGER, 1987], [SCHULMEISTER, 1997], and
[SPADA, 1992], who describe the topic in detail. In the first version of ACT, which was completed in
1982, Anderson divides the mental representation of knowledge into two categories: declarative and
procedural. Declarative knowledge is organised in the form of semantic nets, which consist of smaller
knowledge units, called “propositions”, that describe facts, e.g. “the Earth is round”, or relationships
between objects, e.g. “Peter has a dog”. In contrast to that, procedural knowledge, which defines the
student’s abilities and cognitive skills, is expressed in goal-related rules, similarily to “if~then” constructs
known from programming languages. Whenever a task goal must be reached, the preconditions of the
rules are tested and the goal is split up into smaller sub—goals or task states accordingly. Therefore,
each rule specifies an action that must be performed or a consequence that must be considered by the
student.

Acquiring declarative knowledge is not very difficult, because the propositions are directly encoded from
observations or instructions. However, declarative knowledge does not enable students to solve complex
problems. As mentioned before, it is the purpose of procedural knowledge to find suitable actions for the
current context. Therefore, goal-independent declarative knowledge must be converted into production
rules, but unfortunately this is problematic: production rules are mainly learnt by frequently applying
declarative knowledge during problem solving activities (i.e. learning—by—doing). Therefore, Anderson
and his research team came to the conclusion that computer—based tutorial systems which use the
ACT model had to be implemented to test their hypotheses. As these sample systems are described in
[ANDERSON ET AL., 1995] and [WENGER, 1987], I will not explain them here, but quote their primary
intention instead:

In human cognition, the most common form of internal modification is learning, and therefore
the study of learning should be particularly revealing of cognitive structures. As environments
for the investigation of learning capabilities, intelligent tutoring systems are at once flexible and
predictable, two qualities which make them attractive experimentation tools ((WENGER, 1987], p290).

Long—term memory is a net of interweaved and connected propositions, which is extended by the student
constantly. The size of long—term memory is in principle unlimited, but knowledge structures will be
forgotten, i.e. the available information cannot be accessed anymore, if they are not continously strength-
ened through practice or by encoding additional and partially redundant propositions. According to

L Adaptive Control of Thought.

[Chapter 2] Theoretical Background 5

[ANDERSON, 1996] the activation level of a knowledge unit, i.e. its strength, controls the frequency of
its use (p178). Whenever an item of information is remembered, the associated items in the same net-
work structure will also be activated, so the stimulation is spreading along the links and their affiliated
knowledge structures. This process is not only started intentionally but also subconsciously? (p183). If
a student must elaborate the knowledge contained in a domain, challenging the student to discover and
answer questions for the current subject will result in the underlying production rules and propositions
being remembered better than in less active environments (pp188/193). [SCHULMEISTER, 1997] critizises
that the instructional strategies of Anderson’s ACT are reminiscent of Skinner’s operant conditioning
and behavioristic theories®, which are often inappropriate to teach the student complex problem solving
algorithms with the help of intelligent tutoring systems (p119). However, Anderson’s initial motivation in
developing intelligent tutoring systems was mainly to learn more about skill acquisition than to produce
practical classroom results. Nevertheless he proposed eight principles, based on his ACT theory, in order
to design a computer—based instructional technology, called cognitive tutor, which supports the student in
learning-by—doing. With the tutor’s help skills can be displayed, monitored, and appropriate feedback can
be given, in order to guide their knowledge acquisition by the system (see [ANDERSON ET AL., 1995]).

e Principle 1: Represent student competence as a production set
As in behaviorism and programmed instruction a tutor separates skills into smaller components,
sometimes called frames, that are presented to the learner. In contrast to the aforementioned learn-
ing methods, however, the ACT frames enable an accurate model of the target skill that allows the
tutor to interpret the student’s actions properly.

e Principle 2: Communicate the goal structure underlying the problem solving
Although skills are split up into sub—goals or sub—tasks according to principle 1, it is often necessary
to show the students explicitly what steps are required in solving a problem and how they are
connected. Therefore, a tutor should use a method of reification that illustrates the structure and
the relationships of goals and their sub—goals, for example, in form of a proof graph.

e Principle 3: Provide instruction in the problem solving context

Instructions for the knowledge domain are best placed between each section, in which production
rules are learnt by the students. Whenever a problem arises the students can return to this point,
which has a fixed position between the sections. However, “[the] difficulty with this principle is that
there is not a detailed theoretical interpretation of why it is true and so it is a little hard to know
how to apply it in detail (JANDERSON ET AL., 1995])”. Thus, various positions for instructions
must be tried: for example, students find instructions to interfer with their problem solving if these
are presented at the precise point where they are needed.

e Principle 4: Promote an abstract understanding of the problem solving knowledge
An algorithm for solving a particular problem is often introduced by an example. However, students
tend to memorize production rules that are specifically focused on the example itself rather than
the more abstract idea behind. Therefore, learners need special guidance in order to promote the
creation of production rules with more general preconditions.

e Principle 5: Minimize working memory load

The expression “working memory” is commonly used for information units, which are activated by
mental operations in order to process a cognitive task. The capacity of working memory is normally
limited to seven information units, however with the help of “chunking”*, i.e. a mechanism that
combines formerly separate units to a single “chunk”, the necessary memory space can be reduced
(see [SPADA, 1992], p144). If a student learns a new production rule, he must keep all the relevant
information simultaneously active in his memory. Consequently the size of working memory is
restricting the student’s ability to process all the input, therefore it is essential to minimize the load
on working memory. Both, a well-designed user interface and a well-structured course, can lead to
an environment, which does not interfere with human learning and understanding.

e Principle 6: Provide immediate feedback on errors
This principle has provoked many discussions in the field of tutorial systems (see Section 2.1.3),

2 In literature this is called “associative priming”.
3 See also Sections 2.2.1 and 3.3.2.
4 Introduced by Miller in 1956.

6 Psychological Background [Section 2.1]

and even Anderson’s ACT theory has been modified accordingly over the last years. Formerly it
was thought that production rules were formed by examining the steps which lead to a solution,
but currently “[...] the learner examines the resulting solution [...] and builds productions from
that. Thus, it does not matter whether all the critical steps occur together in time or not — only
that they be represented in the final solution ([ANDERSON ET AL., 1995])”. Therefore, immediate
feedback is not necessary anymore, however it can still prevent the student from spending a long
time following an erroneous path in problem solving.

e Principle 7: Adjust the grain size of instruction with learning
The idea is that students combine production rules to larger units that reach the same goal by
just one cognitive step. Consequently, this effects the analysis of the student’s problem solving and
giving instructions, because in the later stages of a course only these extended rules are observed
by the tutor.

e Principle 8: Facilitate successive approximations to the target skill
When students learn a new domain, they certainly do not know all the steps that lead to a solution.
Therefore, it is the tutor’s task to add and explain the missing parts. While the student proceeds
in the course and acquires new skills, this support must be reduced by the tutor until most of
the work is done by the student himself. According to [ANDERSON ET AL., 1995] this successive
approximation, which results in a less and less pervasive tutor, has frequently worked quite well in
practice.

2.1.2 Problem Solving

In the aforementioned section I have introduced the idea of procedural knowledge of Anderson’s ACT
theory. Students mainly acquire procedural knowledge during problem solving processes, because they
have to divide goals into smaller sub—goals for which they know “operators”. Operators are actions which
can transform problem states, so a sequence of operators describes the solution to a problem. They
are acquired by exploration, analogy (with an existing example), and direct instruction, for example
by a human tutor. Problem solving often requires the task of searching a problem space which consists
of various problem states. Therefore, a learner’s goal is to find the right path through a labyrinth of
states and operators. This process imposes some difficulties, because humans tend to avoid returning
to previous problem states although it is necessary. In addition, they often reject operators which lead
to states that at first glance differ more from the final goal than earlier problem solving stages (see
[ANDERSON, 1996], pp235-250).

An important element of tutorial systems is the support which students receive in their problem solving
process. Therefore, a tutorial system must be able to reconstruct the student’s solution, in order to
understand the student’s reasoning. The following examples show how this problem can be resolved by
creating an internal representation of the student’s behaviour within a tutorial system. I will not mention
the different theories of problem solving in general (like inductive reasoning, see e.g. [SPADA, 1992]),
but concentrate on methods which can be applied in computer—based systems to analyse the student’s
solution. Consequently, the main principles for modelling a student’s knowledge state are:

e The system assumes from correct solutions that the various operators were correctly applied during
problem solving.

e In computer—based analysis incorrect problem solving is a consequence of correctly performing an
erroneous or incomplete algorithm. An alternative definition is that errors occur when students
wrongly fulfil correct problem solving steps, however “[it] is more fruitful to regard the child as
faithfully executing a faulty algorithm than as wrongly following a correct one (see [SPADA, 1992],
p207)”. Errors are therefore not determined by chance, but by a rule-based, systematic, however
erroneous problem solving procedure.

e The main goal is to get an individual model for each student.

[Chapter 2] Theoretical Background 7

The next step for a tutorial system would be to generate a step—by—step solution to any problem, whose
result is then presented to the student. However, this requires the representation of cognitive structures
and processes in a computer—based system. In Section 2.3.2 I will describe the intelligent tutoring system?®
Sypros, which offers this functionality, but in general the decomposition of procedural knowledge and
skills depends on a detailed understanding of the knowledge domain by the system developers as well
as a profound concept of implementation. The consequence is that either the domain must be limited
or the generation process itself. For the simpler task of following a student’s problem solving, however,
[SPADA, 1992] presents two methods, which are both based on the aforementioned principles:

¢ Method by Brown and Burton

Brown and Burton represent knowledge in form of a procedural network, in which larger goals are
divided into sub—goals until the granularity has reached a level, on which errors happen by chance
and not by inaccuracy® (of the problem solving algorithm). The nodes of the network are also
called procedures which are connected with “consists—of” relationships. Therefore, the algorithm of
a student’s problem solving can be described in detail by generating a model which solely consists
of the involved procedures. A student’s incorrect behaviour is reproduced by “bugs”, which are
represented by missing procedures, incorrect procedures, or a wrong order of procedures. However,
for complex domains modelling the student’s problem solving can be difficult, because for each
possible bug an individual network must be generated, so due to the combinatorial complexity
restrictions must be made. Another disadvantage is that the used representational language of
procedural knowledge cannot explain a bug or express how the bug was acquired by the student.
Its sole purpose is to replace correct and incorrect procedures (see [SPADA, 1992], pp208—212, and
[WENGER, 1987], ppl156/157).

e Study by Young and O’Shea

Young and O’Shea use in their study a system which consists of a data storage, an interpreter,
and an archive of “if-then” rules, which are also called productions. In order to execute a rule the
interpreter must successfully compare the elements of the data storage with the preconditions of an
“if—then” rule. However, if more than one rule can be applied the interpreter will also have to resolve
the conflict by deciding which rule is chosen. The student’s problem solving can now be expressed in
a sequence of rules, whose result is a production system that tries to match the student’s solutions
as precisely as possible. Missing or erroneous knowledge skills are then represented as missing rules
or incorrect preconditions. In comparison to the method by Brown and Burton production systems
have two advantages. First, knowledge representation is uniform, homogeneous, and modular, which
means that knowledge is stored in an equal and extensible structure throughout the system. Second,
modelling the differences between students requires less computation than generating networks for
all the possible bugs (see [SPADA, 1992], pp212-216).

The aforementioned methods, however, have a common problem: the set of correct and incorrect
procedures or production rules must be known in advance before a student’s solution can be diagnosed.
Consequently, the system developer must include all the possible errors that might occur. For larger
systems this is often not practical or even possible. However, the repair theory by Brown and Van Lehn
introduces a new idea, which is based on the fact that students tend to replace missing parts of an
algorithm with correct or incorrect problem solving steps creatively. The same mechanism is applied in
the repair theory: the missing links are “repaired” by a problem solver with new sub—procedures, which
are derived from heuristic strategies like “go back one step” etc. Rules and procedures are organised in
a GAOT graph which [WENGER, 1987] describes as follows:

Essentially, the basic mechanism of a GAO graph is that of a production system, with the advantages
of the finely grained formalism of production rules. But this production system is interpreted with
a goal stack of interspersed AND and OR goals that provide the representation with an explicit

For the classification of educational software refer to Section 2.2.

L.e. a systematic error which is caused for example by false training. This sentence is not a contradiction to the afore-
mentioned principles of modelling students’ knowledge states. It is a consequence of Brown and Burton’s assumption for
explaining students’ errors in problem solving.

7 Generalized AND/OR.

8 Psychological Background [Section 2.1]

control structure (p166).

The rule interpreter of the production system follows the GAO graph until it reaches an impasse. In this
case, the problem solver tries to repair the missing rule. The advantage is that repairs are performed
locally before control is given back to the interpreter, so major reconsiderations of the algorithm are not
necessary. This reduces the complexity of computation which burdens the aforementioned methods (see
[SPADA, 1992], pp216-218, and [WENGER, 1987], pp167/168).

2.1.3 Motivation, Feedback, and Adaption

In general, the learner’s motivation can be categorised by examining their motive to approach success®
and their motive to avoid failure?. According to Atkinson (see [SPADA, 1992], p469) the resulting
tendency of students’ behaviour, RT, is then described by the following formula:

RTZ(Ms*Ss*Ps)—(MF*SF*PF)

It includes the motive disposition, which is either directed toward success Mg or avoiding failure Mp,
the stimulus of success Sg or failure Sg, and the (subjective) probability of succeeding Pg or failing Pg
a goal. Therefore, success—driven students (Mg > Mpy) prefer exercises of intermediate difficulty which
are oriented toward achieving a clear objective, because the product of Sg and Pg promises the highest
results. On the other hand, failure-driven learners (Mg < MFp) reject these tasks in particular as the
term of Sg multiplied with Pg then reaches its maximum (see [SPADA, 1992], p479). The consequence
is that success—driven students often set realistic goals, and whenever errors occur they reduce their
expectations in order to avoid frustration. Failure—driven learners, however, choose either difficult or
simple exercises, so in both cases their anticipations are confirmed: in the first case they will presumably
fail, whereas in the second one the goal will certainly be reached. Here, the tutor component of a tutorial
system is very important as failure-driven students tend to follow the standard which a role-model sets
(despite their own experiences). In contrast to that, success—driven students reject that standard: they
are either not influenced or assume, when comparing a low standard of the role-model, that their own
level of expertise is higher than it really is (and vice versa). In literature, this misconception is also
called contra-imitative behaviour (again see [SPADA, 1992], p393).

Failure—driven students in particular depend on feedback by the tutorial system, because if it does not
exist the student’s level of achievement and performance will decrease (see [HARRER, 1996], p56). Early
tutorial systems, which are based on Skinner’s programmed instruction, apply two forms of feedback,
which are given to students after they have either succeeded or failed a task. However, failure feedback
which is directly presented to the learner may have been one reason why these tutorial systems were not
successful. Students saw feedback less as a source of information rather than as a form of punishment.
Therefore, the possibility of aversive reactions toward the system increased. In addition, motivational
feedback for exercises does not have a long—term success. On the contrary, it is generally regarded as being
boring, and even diminishes the students’ motivation. According to [POLSON & RICHARDSON, 1988]
constant intrusive feedback and advice may be decremental to instruction, and feedback that is unclear
or too narrow in focus may also adversely affect learning. Instead, it should provide answers to “how
am I doing?”. In general, feedback must be able to find errors in a student’s reasoning and report these.
However, a system developer must avoid feedback being interpreted as a form of reward or punishment.
Even, if feedback is not directly presented to the learners, a diagnosis of the student’s current problem
solving, for example with bug reports, can include a “covert” component: “covert feedback may be of
more harm than instrumental use to the learner ..., it] might impede and prevent learning rather than
assist it ([SCHULMEISTER, 1997], p110)”. Nevertheless, as long as feedback is not considered as a method

8 Called “success—driven” in this thesis.
9 (Called “failure—driven” in this thesis.

[Chapter 2] Theoretical Background 9

of control or correction by the student, it will be accepted. Consequently, elaboration feedback is often
better than verification feedback: the first is either an inherent part of the user interface, for example
direct manipulation, or it gives explanations in combination with the correct answer, whereas the
second one just informs the student whether his solution is right or wrong (see [SCHULMEISTER, 1997],
ppl09-111).

Closely related with feedback is the ability of the tutorial system to adapt to the student, so a flexible
dialog between system and learner is possible. However, implementing an “intelligent” dialog is currently
difficult, because the target of adaption has neither sufficiently been researched yet nor can it be described
in the formal logics of computers. Adaption is mainly concerned in presenting the information space and
knowledge in a way that suits the student’s individual preferences. This is either done by controlling the
student’s activities (also called “planned adaptivity”, normally used in intelligent tutoring systems) or
by giving the students the possibility to discover a broad information space on their own by giving them
control over the system (also called “hermeneutical adaptivity”, which is difficult to implement. The
closest representative would be a hypertext system). According to [ESPINOzA, 1996] the issue of trust
is especially important for a tutorial system. As adaption processes are just able to guess the students’
intentions, he decided to choose an intermediate solution: “one way of increasing the trust in the system,
is to place some control over the system in the hands of the user. [...] If the choices of the system are
incorrect, the user can alter them”. Partial user control is often necessary, because the granularity of
the adaption process is limited. In order to reach a natural form of adaption many learner’s parameters
must be considered, however this could enormously increase the set of diagnosis strategies, which must
be regarded by the system. Therefore, [SCHULMEISTER, 1997] also speaks of “microadaption” (p201),
because the “[...] adaptability in the best systems is rather coarse when compared to the way human
teachers can weave diagnosis and didactics tightly together ([WENGER, 1987], p426)”. As mentioned
before, a tighter control, which results from a more detailed adaption process, hinders the students’
progress, and according to [SCHULMEISTER, 1997] contradicts learning processes. Thus, fuzzy diagnosis,
which is not precise, is considered instead.

2.1.4 Didactics

Didactics is the “the art or science of teaching”, which uses the following principles to choose and trans-
form subjects of a knowledge domain into course subjects (see [KAISER & KAISER, 1994], pp240-262):

e Course subjects are based on current or future situations which are relevant for the students.

e Help and orientational guidance must be given to make decisions for actions in the course domain
visible. Based on these, the student must then be able to manage real-life situations.

e Learning processes must be based on scientific reasoning. Therefore, the student should adopt
scientific methods like the ability to accept counter—arguments or to examine a topic objectively.
In addition, the possibilities as well as the limitations of scientific reasoning should be learnt.

e Course subjects are either presented as a typical example, which helps to discuss similar subjects,
or in form of a specific case, which allows a general insight into a topic.

e Course subjects are organised in a reasonable course structure, often consisting of important facts,
keywords, theories, models etc.

In tutorial systems these general principles are applied by the didactic module in order to adapt its
presentation of topics to the needs of individual students based on the curricular information included in
the course domain. The didactic module must also decide when interventions by the tutor component are
necessary and what information is then given to the learner. Possible advice includes user guidance or ori-
entational help, explanations, and tips on solving a particular problem. [REINHARDT & SCHEWE, 1995]
recommend using the same didactic methods in a tutorial system that are already common in the
domain. This makes sense because didactic methods can largely differ from domain to domain. However,
they do not cover all aspects of tutorial systems as [HARRER, 1996] writes:

10 Classification of Educational Software [Section 2.2]

Didactic models mainly give indications on which course subjects should be chosen and how
long—term planning of a course is done. They provide little precise advice for helping students in
their problem solving process (translated, p66).

A discussion on didactic operations for tutorial systems can be found in the book by [WENGER, 1987],
pp395-415, who specialises in pedagogical activities that are intended to have a direct effect on the
student.

2.1.5 Limitations

When evaluating tutorial systems special situations and circumstances must be regarded which can
influence the results of studies that examine the effects on the student’s learning process. The following
points must therefore be considered:

e Hawthorne effect
The Hawthorne effect describes a situation where test results are influenced by the mere fact that
students are under observation. Learners often feel stimulated to increase output or accomplishments
when evaluating a tutorial system.

e Size of test groups
The size of a test group plays an important role, merely for statistical reasons. Results which were
found after testing a few people do not have to be incorrect, but they might be irregular if applied
to a different course.

e Novelty

The use of the computer in learning is quite new, so most students gain their motivation for working
with a tutorial system through curiosity. After a while, however, this stimulating effect must be
replaced by a motivating environment that is part of the tutorial system itself. In contrast to that,
the use of computers for education can also repel learners who are not familiar with this technology.
Both situations must therefore be considered when evaluating tutorial systems. In addition, with
the advances of computer hardware and software the results of studies, which are often not older
than 10 years, are quickly out—dated. So, for example, the preference for “one window” systems, is
continously decreasing as learners get more and more used to “multiple window” systems.

Consequently, results and studies in the field of educational software should be critically questioned by the
reader before decisions for implementation are made. The reason is that the design process of a tutorial
system requires a lot of time and energy by the system developer. For example, [SCHULMEISTER, 1997]
writes that in courseware design between 50 to 500 hours of development time are necessary for one hour
of a course (p105).

2.2 Classification of Educational Software

In educational research using the computer for training has always been an important application, so
over the years various software concepts were developed, which differed not only in the technologies
that were available at that time, but also in their psychological and epistemological theories. As this
thesis discusses the various techniques to implement a tutorial system on the world—wide web, it is first
important for the system developer to know what types of tutorial systems or educational software
exist. Although the following classification is based on stand-alone programs, it will nevertheless
present conceptual advantages and disadvantages, which will also be valid in an network environment.
Learning with the help of computer networks, however, has not been thoroughly researched yet. It
still lacks the experience and the systematic research known from other learning environments. In
the field of group dynamics, for example, the first observations and theoretical considerations have
just been made (see [REINMANN-ROTHMEIER & MANDL, 1995]). The following chapter refers to
the books and articles by [WEINERT & MANDL, 1997], [SCHULMEISTER, 1997], [WENGER, 1987],

[Chapter 2] Theoretical Background 11

[BRUSILOVSKY & PESIN, 1996], and [SEIDEL, 1993], who discuss the classification of educational
software in detail or introduce new ideas into the topic.

2.2.1 Drill-and-Practice and CAIl Programs

Traditional drill-and—practice programs are based on the principles of programmed instruction, which
received its major impetus from the work of B. F. Skinner, who described in 1954 how programs could
be developed scientifically. Their main goal is to teach a knowledge domain which is well-structured,
or to train students in simple skills that are suitable for mastering routine tasks. Traditionally, the
student could hardly influence the linear and sequential course flow, which was defined by the system
developer, so over the years other forms of training have been adopted. For these systems the ambiguous
expression “computer—aided instruction'®” is frequently used. According to [WENGER, 1987] traditional
CAI programs are reminiscent books, whose contents are set in advance by the author, but which
allow readers to choose the chapters they want to read individually. More sophisticated CAI systems
almost resemble intelligent tutoring systems'!, as they are able to generate exercises or adapt the level
of difficulty to the student’s preferences and performances (pp4/5). ITS, however, uses a structural
scheme'? for the underlying system, whose components are often implemented with the help of a
knowledge base. The main difference between CAI and ITS is the psychological foundation: CAI
is mainly based on operant conditioning and the theory of behaviorism, while ITS is founded on
cognitive psychology. In contrast to ITS, computer—aided instruction and drill-and—practice programs
especially, use presentation units called frames that the tutorial system developer creates by splitting
up the information space and the teacher’s expertise. According to the (strictly) defined course flow
these frames are displayed, and the student must normally answer a question contained in each
frame. Afterwards the CAI system immediately gives positive or negative feedback, i.e. “right” or
“wrong”, before the next frame is shown and the same operations are repeated again. Consequently,
CAI programs are better suited to domains whose information space consists of facts and whose
learning goals are clearly expressed. Thus, the programs can take direct advantage of the pedagogical
experience of human teachers, who must however include in the system all the possible reactions that are
required in respect of the current circumstances (see [WENGER, 1987], p4). As programmed instruction
is mainly used for courseware applications, further details on this theory can also be found in Section 3.3.2.

2.2.2 Tutoring Systems

As the name suggests a tutoring system is mainly aimed to support the student with an individual learning
environment that acts similarly to a human tutor. Therefore, it must be flexible, dialog—oriented, and
adaptable in regard to the user’s input and knowledge. According to [WEINERT & MANDL, 1997] the
following types of tutorial systems exist:

e Traditional tutoring system
Traditional tutoring systems present information about a complex subject to the student, on which
questions are asked, and depending on the student’s answer a new course flow is selected. Recent
systems are also able to adapt to the student’s knowledge and preferences. However, these imple-
mentations are rarely based on the results which were made in studies of cognitive psychology.
The quality of the dialog with the student separates traditional tutorial systems from ITS, but is
comparable with the knowledge presentation of sophisticated CAI programs.

e Intelligent tutoring system
I will discuss the structure of intelligent tutoring systems (ITS) in the following Section 2.3, so only
a short overview will be given here. In contrast to traditional tutorial systems, ITS use theories of
cognitive psychology and artificial intelligence, and so they are able to give advice to the student.

10 Abbreviated as CAL
11 Abbreviated as ITS.
12 Gee Section 2.3.

12 Classification of Educational Software [Section 2.2]

However, applying these theories is generally difficult: it is not easy to create a suitable model for
the student’s cognitive structure, and it is doubtful whether the skills of a human tutor, which are
not, restricted to just one domain, can ever be reproduced. Nevertheless, some solutions, which are
currently used in ITS research, are also found on page 18.

e Tele—tutoring system

Tele—tutoring systems avoid the problems which arise in designing and programming an artificial
tutor by integrating a human instructor into the system: either the student and the tutor are
working on the same exercise or the tutor is contacted by the student when needed. However, as
the name “tele” suggests the learner and the instructor do not have to be in the same room. In a
prototypal implementation® the communication and the cooperation is established with the help of
a computer network that transmits all the textual and audiovisual data. A disadvantage is that most
of the time a tutor must be present, although the system itself can also be accessed if the instructor
is absent. In my opinion, the benefits of having a human tutor on—site are certainly not restricted
to tutoring systems alone. Unfortunately, this solution cannot be seen as a permanent replacement
for a computer tutor. Effort must still be made in developing a good tutor model, because human
instructors are not permanently available. Either the size of a group of learners or the missing
resources to pay all the tutors may prevent the use of tele—tutoring systems. The technological
capabilities, however, do not have to be as advanced as in the aforementioned prototypal system.
For example, a similar system can be established on the world-wide web by using synchronous
navigation'* for a cooperative work environment and a chat'® program for immediate questions
and answers.

2.2.3 Hypertext and Hypermedia Systems

Hypertext—based systems belong to the category of exploratory systems. These closely resemble human
thinking, because in an information domain problem solving requires the steps of searching, probing, and
exploring by the students. In particular, the learner’s freedom to test new solutions and the possibility
to discover other areas of the domain are inevitable in hypertext—based systems. However, the success of
exploratory learning is influenced by many variables: for example, it essentially depends on the student’s
self-confidence and competence (see [SCHULMEISTER, 1997], p72). In psychology the theory, on which
these systems are based, is called constructivism. Hereby, knowledge is dynamically created by a sub—
part of the student’s recognition process, which emphasizes the active interpretation'® of an object by
the learner. Therefore, knowledge cannot be simply transfered to other students without a separate
reconstruction process (p74). According to [KLEINSCHROTH, 1996] hypertext environments inherently
support the acquisition of knowledge, because students can search the domain by following links, which
lead to the different information units. This form of navigation is also called browsing, and it helps
learners to create or reconstruct knowledge structures respectively. Which requirements must an “ideal”
hypertext environment fulfil? Browsing the knowledge domain should not be restricted, so links to access
all the relevant information must be offered. In addition, it should be possible to return to a familiar
starting point, whenever a student is lost within the information space or reentering the system. Finally,
the author must prevent learners, who are not experienced in hypertext environments or computers,
having problems in using them (see [FABER, 1993]). These design guidelines are supposed to diminish
a phenomenon, which is frequently called “lost-in-hyperspace”. [KLEINSCHROTH, 1996] describes two
forms:

e Museum effect
Essential information is “lost”, missed or not found within a large information space.

e Hansel-and—Gretel effect
After browsing a domain for a while users often tend to forget, what they were really looking for.

13 MS-DOS 5.0 zum Selbststudium, developed by Siemens AG.

14 See Section 3.2.2.

15 See Section 4.3.2.1.

16 Tn contrast to that, objectivism says that cognition, i.e. the “act or process of knowing”, consists of a memory represen-
tation of objects, that is corresponding to the objects in the outside world.

[Chapter 2] Theoretical Background 13

Possible solutions to these problems are commonly aimed at the navigation support of hypertext
environments, so, for example, organisational diagrams of the information space!” or orientational
indicators for the current position in the domain are used. However, [SCHULMEISTER, 1997] asks
whether the “lost—in—hyperspace” theory is a myth of pedagogical science (p59). Often authors think
that a stricter form of navigation must be introduced, and they justify their hypothesis with the
difficulties which learners might have in retrieving the necessary information. However, these changes
also lead to a system, where hypertext links can be less freely accessed. It can be argued that a “mild
disorientation can excite readers, increasing their concentration, intensity, and engagement [...]. The
complete absence of orientational challenges is dull and uncomfortable. A boring hypertext is every bit
as bad as a confusing one ([SCHULMEISTER, 1997], p59)”. In addition, readers of hypertext documents
sometimes find information, which is very useful for them, by coincidence. However, this will be less
likely if the navigation between documents is limited. The phenomenon itself is called “serendipity”,
the effect of which is often seen as an analogy to exploratory learning. With the aforementioned
arguments it is obvious that “lost—in—hyperspace” is not an inherent part or mischief of hypertext,
but a problem in the design concept of a navigation component. Disorientation and confusion can also
come from the segmentation of the information space. In order to structure a knowledge domain for
a hypertext environment, the various documents are split up into smaller information units, called
“chunks”'®, which are then linked together to a final system by the author. However, if the size of
each chunk is too small, it will be more difficult for the learner to see a coherent context between
the segments. Consequently, an author must ensure that each chunk includes contextual information
(see [SCHULMEISTER, 1997], p61), like additional links to corresponding documents. According to
[FABER, 1993] hypertext systems are currently seen as a more suitable basis for developing tutorial
systems than drill-and—practice or CAI programs. The behavioristic learning model of CAI is often
inadequate for educational software, so hypertext systems with their less hierarchical structure, which
can be discovered by the students through browsing, are prefered. Although CAI has included new
technologies, the importance of its underlying pedagogical concept is still neglected. The same is often
said about hypertext, but it already fulfils the preconditions of exploratory learning by definiton.
Partially as a consequence, adaption to the learner plays a minor role in current hypertext systems. In
the paper by [BRUSILOVSKY & PESIN, 1996], however, two techniques of “adaptive hypermedia” are
introduced: adaptive presentation and adaptive navigation support. The first one distinguishes different
contents for novice or expert users, so beginners get more explanations than skilled students. The
second one includes an adaptive ordering technique, which arranges links in hypertext pages according
to their importance. For example, the closer a link is to the top of a list, the more relevant it is for
the user. Another form of adaptive navigation support is visual annotation of links as used on the
pages of the UMUATI' journal: conferences which are held in the reader’s country are specifically marked.

A paradigm for an interactive program that promotes the acquisition of cognitive structures in an
exploratory learning environment is the so called “microworld”. It is an artificial and closed world with
its own rules, whose enclosed knowledge must be discovered by the students: “[...] a microworld may
well be conceived of as a play area that gives students a chance to experiment with concepts that do not
otherwise exist in a world in that combination ([SCHULMEISTER, 1997], p51)”. Based on the principles
of constructivism a typical example for a microworld is Papert’s Logo and Turtletalk curriculum. The
students learn the programming language Logo by drawing graphs with the help of a “turtle”. The turtle
itself is controlled by Logo commands, and whenever it moves it leaves a trail in the form of a line on
the computer screen. However, with microworlds it is not always certain whether or not the acquired
knowledge can be used in real world examples, because their domain only consists of a small subset of
rules. According to [BRUSILOVSKY & PESIN, 1996] the approach of ITS and learning environments,
like microworlds, is complimentary, so he suggests the combination of both: ITS will inherit the merits
of an exploratory and student—driven form of learning, while microworlds, which are controlled by an
intelligent tutor, could provide a more efficient system to the user. If an intelligent tutoring system is
based on the microworld concept, the implementation of a tutor component will in particular be difficult,
because students must be able to test their hypotheses, carry out experiments, and evaluate the results.

17 In literature often called “maps”.

18 These chunks should not be confused with the information units of Miller’s memory model (see page 5), although these
hypertext chunks are aimed to reduce the work—load of the human working memory.

19 User Modeling and User-Adapted Interaction, see http://umuai.informatik.uni—essen.de/.

14 Classification of Educational Software [Section 2.2]

In this case it is better if simulations are chosen for learning ([SCHULMEISTER, 1997], pp212/213). In
their article [BRUSILOVSKY & PESIN, 1996] describe the design of a sample application, which combines
the advantages of ITS and hypertext learning environments, so I will not explain the various integration
steps here. In my discussion on techniques for implementing a tutorial system on the world—wide web I
will introduce the underlying hypertext model of the world—wide web, which is based on the hypertext
markup language HTML (see Section 3.1). More advanced hypertext environments exist, but currently
only HTML, in conjunction with a world-wide web browser2?, allows systems that are universally
accessible.

2.2.4 Simulations

Computer simulations try to describe a dynamic system that exists in reality with the help of a network
structure. The nodes or elements of the network represent objects of the real world. These are connected
by links if the internal state of an element depends on external circumstances, i.e. other elements. The
components of a network must normally be expressed in mathematical form, so a simulation is able
to compute the influences on neighbouring objects, whenever a change has occurred in one element.
Consequently, a lot of time and resources must be invested into the design of a network model, because
otherwise all the results of a simulation may be incorrect in comparison to real events or situations. For
students a simulation provides an exploratory learning environment, in which they can experiment with
the different variables of the system in order to understand the underlying dependencies. This certainly
promotes the creation of mental models, which [SPADA, 1992] describes as large—scale knowledge units.
Mental models are based on subjective observations by a person and consist of knowledge structures
and processes that are used in specific situations, which are highly complex but less transparent. In
problem solving mental models are very important because only if the mental representation is adequate,
can a complex situation be managed by a person successfully (pp157/158). Therefore, “learning—by—
doing”, which is an essential part of simulations, helps students to train suitable reactions in complex
environments. [WEINERT & MANDL, 1997] distinguish the following goals in simulations:

e Substitute for experiments
This type of simulation is often necessary if real experiments are too consumptive, expensive,
or dangerous. Users can especially test their hypotheses in domains where the effects of natural
processes can otherwise hardly be observed.

e Model building systems
With their help users are able to write simulations by defining the underlying models themselves.
Therefore, model building systems provide the tools and components, that are necessary to create
an individual simulation which is then tested by the users.

¢ Role playing
A role in an unfamiliar environment is assigned to the learner, who must try to reach a given goal by
making the correct decisions. A typical example is Dérner’s Lohhausen, a city in which the learner
is playing the mayor’s role, and has to lead the town into a prosperous future (see [SPADA, 1992],
p266). These simulations offer the opportunity to train in complex situations, which cannot be
solved in precisely defined steps. Nevertheless learners are often highly motivated when using these
systems.

e Training of psychomotor skills
The simulations train psychomotor skills which must become a routine task for the students. There-
fore, the system itself is very similar to reality, especially if physical information or feedback is
necessary (e.g. in flight simulators).

e Case—based learning systems
Case-based learning systems are very common in medical training: the students must find the
correct illness and treatment for a given patient (i.e. case). Consequently, they have to analyse the
information presented by the system, ask further questions, and base their diagnosis on the collected
material.

20 A program that is used for navigation in the network.

[Chapter 2] Theoretical Background 15

I conclude that simulations are able to offer a learning environment, which closely resembles real life
situations. Their highly motivating presentation of a domain is especially an advantage compared to the
other types of tutorial systems. They only lack an adaptive support for learners, but research studies
must show first, how simulations can integrate a help functionality, which is able to optimize the learning
process (see [WEINERT & MANDL, 1997]). Nevertheless, the popularity of simulations has already led to
an implementation on the world-wide web (see Section 3.6.2.2).

2.2.5 Cognitive Tools

Cognitive tools are best described as programs that help to extend or enhance human cognition. They are
able to make certain tasks easier for the users, and therefore relieve human information processing from
redundant work. The new capacities can then be assigned to more complex cognitive procedures, that
demand problem solving skills or the student’s unlimited attention. A typical example for a cognitive
tool is a text processing program. With the help of WYSIWYG?2! and direct manipulation?? the user can
solely concentrate on the layout and the contents of a text, rather than worrying about printer commands
etc. With these tools students are required to create knowledge structures on their own by learning
cognitive concepts through exploration. Students often have to compensate for the missing structure of
the underlying learning goals by planning their studies actively. In contrast to that, intelligent tutoring
systems use an instructional method that starts with smaller sub—goals, which successively form a basis
for higher knowledge skills. “This strongly suggests that the philosophy of intelligent tutoring is really
orthogonal to the cognitive tool approach to learning ([SCHULMEISTER, 1997], p344)”.

2.2.6 Conclusion

According to [SEIDEL, 1993] the technical expectations in educational software are manifold: it must be
portable to run on different computer platforms, support the student with an individual and adaptive
environment, allow access to data which is not part of the system itself, analyse the student’s actions,
contain interactive components like simulations, and offer various cooperative work tools. However,
[REINMANN-ROTHMEIER & MANDL, 1995] think that software developers often concentrate on anima-
tions or “funny graphics” rather than on didactic design and domain— or task—oriented contents. The
benefits of using multimedia components in learning will decrease if the underlying pedagogical concept
has not been considered in the early stages of the design process. I conclude this chapter with a subjective
discussion on the various types of educational software. An overview of this discussion is presented in
table 2.1 which compares the different types of educational software in regard to those aspects which
are mostly required by tutorial system developers. In my opinion drill-and—practice programs, which
can easily be implemented on the world—wide web, are suitable if basic skills must be taught to the
students, e.g. in an introductory course. However, this does not include solving complex problems,
which will be required in the learner’s everyday work. For that purpose I recommend intelligent tutoring
systems, preferably in conjunction with a hypertext and simulation component. On the world—wide
web a hypertext system is realized with the help of HTML, which describes the layout of a document
and the link structure of a course. An intelligent tutoring system can be based on HTML as well, thus
incorporating the benefits of both. Building a comprehensive resource base for the hypertext component,
which contains all the information the student might demand??, is essential to enable successful learning.
Simulations, which can also be embedded into a web—based tutorial system in form of Java applets,
provide all the prerequisites that are needed for motivating and task—oriented training. However, the
domains are mainly restricted to administrative applications, like management, or environments with
simple physical rules, which rarely include natural systems because of the many unknown correlations.
Cognitive tools can hardly be adapted to the world—wide web, because they require control of the user
interface or the underlying browser application which is currently not possible (for example, user events
for extended GUI?* operations etc.). However, some of their concepts, especially the idea of direct

21 What you see is what you get. Tt describes a technique, which is mainly used by text processing programs, for displaying
a text on screen in exactly the same way as it will be printed on paper.

22 A graphical user interface allows direct manipulation by representing system operations with the help of metaphors, like
“drag—and—drop”.

23 See also Sections 4.2.1.2 and 4.2.3.5.

16

General Structure of Intelligent Tutoring Systems [Section 2.3]

manipulation, can be used in Java applets or simulation plug-ins?>.

Table 2.1: Classification of Educational Software.

5

CAI ITS hypertext simulation cognitive tool
reality” training of facts, | depending on | depending on do- | training of situ- | depending on the
less useful outside | domain; close to | main. ations which are | purpose of tool.
the program. actual tasks of relevant to the
learners. learner.
orientation® | low; rarely com- | depending on the | depending on the | motivating learn- | depending on use
plex and motivat- | implementation. implementation. ing environment | of tool.
ing problems. with complex
problems.
activity” less active than | active problem | high; exploratory | high; student | high; student
reconstructive solving. learning environ- | makes complex | must compensate
thinking. ment. decisions. missing learning
goals.
adaptivity? | low; immediate | inherent part of | missingin current | deficits in current | low; students
feedback. ITS. systems. systems. should have
necessary skills
before.
@ Contents are based on actual requirements in the real world.
b Domain-specific problems that are preferably complex and motivating.
¢ Learner’s role in a system.
4 Adaptive support for the student.
2.3 General Structure of Intelligent Tutoring Systems
Based on the works by [WENGER, 1987], [SCHULMEISTER, 1997], [HERzOG, 1996], and

[GONSCHOREK, 1997] T will shortly introduce a modular structure for intelligent tutoring sys-
tems, which is frequently used in ITS research today. For an in—depth discussion of the current topic
I recommend the first two books, as I will mainly focus on a general overview that explains the basic
terms. The last two authors have been working on an intelligent tutoring system called Sypros2®, which
incorporates most of the methods and techniques that will be mentioned here and therefore, I will also
have a closer look at the ideas behind Sypros.

2.3.1 Components of Intelligent Tutoring Systems

The main difference to systems based on computer—aided instruction is already encompassed in the term
ITS itself: intelligence. Intelligent tutoring systems try to copy the skills of human tutors by focusing
their concepts solely on that goal. They represent their domain knowledge in a separate part of the
system, which is called the expert model as the skills and proficiency of a human expert are stored
there. Knowledge is collected by applying various techniques, like interviews, questionnaires, “think
aloud”—protocols, and monitoring the expert’s problem solving steps. According to Anderson’s ACT
model two forms of knowledge are included into the expert’s representation: procedural knowledge
which consists of “if-then”—rules, and declarative knowledge which is best described as general facts,
that are not focused on specific tasks. In addition, [SCHULMEISTER, 1997] mentions heuristic knowledge
which is based on human experts’ experiences and general methods for problem solving. Knowledge of
an expert model is either represented in form of a black box or glass box model. The first cannot tell
the student what steps it made to solve a certain task, so its internal derivations remain invisible. The

24 Graphical User Interface.
25 See page 37.
26 Synchronisation paralleler Prozesse mit Semaphoren, developed at Technische Universitit Miinchen.

[Chapter 2] Theoretical Background 17

— User Interface]
communication between system and student

Response Exercise

Student Mode Tutor Model

student’s Information _ | pedagogical
knowledge skills

A
Y Diagnosis

Expert Model
representation of expert’s knowledge

Figure 2.1: Structural scheme of an intelligent tutoring system. It consists of four different components
which resemble essential parts of human education.

second one however works like a traditional knowledge—base system, and its algorithms are transparent
to the student. Sometimes it is also combined with a cognitive model which is responsible for presenting
all the different steps which lead to a solution in a way that closely resembles human problem solving.
Unfortunately, implementing a cognitive model is even more complex than designing a glass box model,
which itself is often replaced by the simpler black box model.

In traditional learning environments we do not only find an expert, but also a student, a tutor, and a
method in which the student communicates with the other members. Consequently, an intelligent tutoring
system contains similar concepts for each participant, thus reasonably integrating the real-life example
into the world of computer-based education (see figure 2.1). The student model represents the current
expertise of a student, and stores information about typical errors, problem solving methods, and the
learner’s preferences. The different student models in ITS research can be classified by using a scheme
which is based on:

e Information
A student model depends on the anticipations that it can make on the student’s goals. While some
systems design their student model around the final results of a task, others are able to follow the
student’s sub—plans that lead to a solution.

e Representation
Within the system the student’s knowledge is either stored as a subset or deviation?” model. The
first one keeps track of to what extend a subset of the expert’s domain knowledge has been learned,
while the other one monitors what errors have been made by the learner and where the student’s
solution differs from the expert’s answer. However, both concepts use a “simplistic model of the

27 Instead of “deviation” we also find the terms “buggy” and “perturbation” in ITS literature.

18 General Structure of Intelligent Tutoring Systems [Section 2.3]

learning process” (see [SCHULMEISTER, 1997], p184), so compound bugs, i.e. mistakes that depend
on each other, are hard to find, random errors are difficult to detect, and individual learning styles
are rarely implemented.

e Diagnosis
Diagnosing the current student’s knowledge requires techniques that depend on the knowledge
type, which is either procedural or declarative, and the granularity of the collected information.
In ITS research model tracing, plan detection, issue tracing and “generate—and-test” exercises are
frequently used. In rule-based intelligent tutoring systems model tracing tries to compute the sub—
goals that lead to the student’s answer. Plan detection internally creates a tree, whose root represents
the problem, the inner nodes the sub—goals, and the leaves all the steps which are required to solve
the problem. In contrast to that, issue tracing defines two variables for each information unit of
the expert model, and their values are increased whenever the student either uses or forgets a unit.
Finally, “generate—and—test” exercises are suitable to detect compound errors, because a series of
exercises, which is especially designed to find a certain problem or misconception, is presented to
the student.

The adaptability of an intelligent tutoring system is mainly based on the information stored in the
student model, so the possibilities of the tutor model are also determined by the coverage and accuracy of
the anticipated student’s knowledge (see [WENGER, 1987], p16). The main task of the tutor model is to
control the presentation of information. According to the differences between expert and student model
on—going topics or exercises must be chosen, whose proper timing and form of presentation depend on
the implemented pedagogical and didactic rules. For example, intelligent tutoring systems frequently use
Socratic dialogs, in which the student is asked questions by the system in order to provoke a self-reflective
analysis of errors. Coaching on the other hand is mainly concerned with introducing suitable examples
and training various methods in problem solving. Therefore, the tutor model is responsible for giving
advice to the student, to correct and increase the student’s knowledge, and to provide motivational
feedback. The epistemological concept used in current tutor models is based on instruction, and less
on exploratory learning evironments, as in hypertext systems (see [SCHULMEISTER, 1997], p186).
Consequently, the learner’s freedom is limited, however students who are afraid of failures profit from
guided learning. Nevertheless, current tutor models still have the following two disadvantages: the passive
role in which the student is put by the system, and the lack of human intuition and common knowledge.
[SCHULMEISTER, 1997] also criticises the fact that students are rarely asked to participate in the design
process of an ITS, and although a student model assumes the student’s knowledge, the learner must still
develop his own expertise actively. Otherwise he will just acquire the subset of the expert model, which
is given by the system, and not the proficiency of a real expert (p187).

The remaining component of an intelligent tutoring system is the user interface. Its importance should
not be underestimated by the system developer, because it will be the only part of an ITS with which
the student directly interacts. Firstly, the interface must present the different course topics in an un-
derstandable way, and secondly, offer the student a robust and efficient environment for learning and
working with the system. An ITS is only then regarded as “intelligent” if its user interface is both flexible
and adaptive to the student’s needs. The system and the learner desirably communicate in a natural
language®®, however it is more important that the meaning behind the student’s actions is understood
(also see Anderson’s suggestions on page 54). [SCHULMEISTER, 1997] distinguishes four different forms
of interaction:

e Socratic dialog

e Coaching
The tutor lets the student work, and provides help only when asked.

e Learning—by—doing

The tutor guides the student through the course. It suggests when to select information, and derives
differences between the student and the expert model from this.

28 Please note that: “The most natural means of communication between people is not necessarily the most ‘natural’ one
between human and computer [...]. People are different from computers, and human—-human interaction is not necessarily
an appropriate model for human operation of computers ([SCHULMEISTER, 1997], p58)”.

[Chapter 2] Theoretical Background 19

e Learning—while—doing
The tutor remains in the background and occasionally gives advice.

Although in my opinion the general structure of intelligent tutoring systems is very reasonable, because
the student, the expert, and the tutor are represented as in real life, some critique has been raised in
regard to existing ITS implementations. [SCHULMEISTER, 1997] quotes various research papers which
say that the promises of intelligent tutoring systems are certainly overrated (pp203-220). Mainly, the
primitive student model, the limitations by choosing a suitable knowledge domain, the restrictions
in communication that are imposed by the current computer technology, and the hypocritical goal
of tutor models to pretend that they understand the learner, are disapproved. However, these are
only implementational details that may be modified or replaced in future systems. For example, an
exploratory learning environment can be introduced in a tutor model without having to change the
remaining parts of the system. Therefore the structural scheme itself is not concerned, but it must be
clear that designing an good ITS fundamentally depends on integrating psychological and educational
components which may not be available with modern computer technologies. However, it must be asked
whether the abilities of human tutors are not overrated. Sometimes they also fail to give the motivational
support and cognitive strategies necessary for successful problem solving,.

2.3.2 Example: Sypros

The aforementioned structure has already been applied in the intelligent tutoring system Sypros, which
was developed at Technische Universitat Miinchen. The system is used in training students in how pro-
cesses which can be executed simultaneously are synchronised with the help of semaphores. The exercises
are displayed in textual form, and must be solved by defining the necessary semaphore variables and
adding the suitable request and release operations. Therefore, an editor is integrated into the system,
which also allows the constant monitoring of the student’s actions by the system. Internally, a plan—goal—
tree is built up for each exercise, in which goals represent the different methods, e.g. variable declarations
or semaphore states. These lead to a plan that knows how to transform a conceptual goal into a program-
ming construct, like semaphore operations or variable initialisations. The student’s solution is continously
matched with the stored plan—goal-tree, and consecutively interpreted and diagnosed according to the
expert’s knowledge. Furthermore, a long—term model of the student’s goals is created, and it collects
information on how often goals were used by the learner during the course. A visual feedback is im-
mediately given in the form of a sad, inconclusive or smiling face. If the system is set to represent an
exploratory, but guided learning environment, it will recommend further steps or explain errors when the
window, in which the face is displayed, is clicked by the student. In addition, Sypros offers the possibility
to simulate a synchronised program. This functionality closely resembles debuggers that are known from
many programming languages: variable values are monitored, the source code is stepped through and
markers can be set. Remarkably errors are automatically detected, and the simulated steps which lead
to an error are shown to the learner. Also, programs are searched for conceptual errors which use too
many synchronisation operations and therefore restrict allowed program runs. Finally, a hypertext—based
help manual is implemented to assist the student with definitions or further explanations at any time.
All these features make Sypros a useful tutoring system for training learners in its very limited domain.
Nevertheless, the restriction to just one aspect in parallel programming, i.e. synchronisation, is not a
disadvantage at all. On the contrary, the complexity of such a system is reduced, and therefore details,
which are often demanded by critics of intelligent tutoring systems, can be implemented?®. In my opinion,
Sypros must still be seen as a tool to increase understanding of its domain rather than a replacement
for a human lecturer. Hopefully one day Sypros will also be available on the world—wide web, and will
certainly use the techniques that I will introduce in Chapter 3.

29 E.g. the didactic concepts by [HARRER, 1996].

Chapter

Techniques

The hypertext markup language HTML is the basis for all world-wide web documents, except for
programs which are solely written in Java. By definition, HTML allows the implementation of an
exploratory learning environment, whose objects are realized using one of the following techniques and
are embedded into an HTML document. Although the techniques are explained in separate chapters,
they depend on HTML and must therefore be seen in connection with HT'ML to enhance the possibilities
HTML already offers. Although choosing one (or more) of the following techniques is an essential part
of the design process of a tutorial system, the decision for the underlying pedagogical principles and
knowledge presentation is more important. The course structure and the student’s progress depend on
the learning environment rather than on fancy graphics, which nevertheless raise the attraction of a
system if applied correctly.

3.1 Hypertext Markup Language Extensions

The invention of the terms hypertext (and hypermedia) are credited to Ted Nelson in 1965.
[HALL ET AL., 1996] writes:

The terms hypertext and hypermedia are often used quite interchangeably. Hypertext in the strict
sense only applies to text—based systems; hypermedia is simply the extension of hypertext to include
multimedia data [...]. Nelson defines hypertext as non—-sequential writing and views it as a literary
medium, but the ideas the term encapsulates are wider than that and include cross-referencing and
the association of items (pp11/12).

In this chapter I will focus on a derivative of hypertext, the hypertext markup language, that was
developed by Tim Berners—Lee at CERN in the early 1990s. It is a universally understood language for
publishing documents on the world-wide web!, where both, HTML and WWW, have largely benefited
from each other: HTML is an easy-to—use language for describing the appearance of text and for
distributing documents globally, and since the Mosaic browser was introduced it has blossomed with
the explosive growth of the WWW. Furthermore, main features of HTML include the accessibility from
anywhere and the provision of open protocols ([HALL ET AL., 1996]), as for each version of HTML
it was tried to agree on a common standard to ensure that content providers can rely on hypertext
language, which will be understood by most world—wide web browsers. The advantage for the user
is that documents do not become unreadable in a short period of time ([RAGGETT ET AL., 1997]).
The world-wide web is a closed hypermedia system. In contrast to open hypermedia systems? it
combines data and hyperlink anchors in one HTML document. Unfortunately, link management is
generally non—existent, and thus it is almost impossible to maintain and update information without

I Commonly abbreviated as WWW.
2 E.g. Microcosm, see [HALL ET AL., 1996].

20

[Chapter 3] Techniques 21

carefully examining the anchors® pointing to and from a document. Consequently, frequent world—

wide web users often receive error messages, saying that the location of a document is invalid when
accessing a reference in a search engine. Nevertheless Hall thinks that it is possible to implement
almost any hypertext model which does not rely on embedded links in the world-wide web (p27).
A sample system with better consistency and integrity of links is Hyper—G, which was developed at
the Universitdt Graz. Links are stored in separate databases, and link management tools support
the developer in keeping references updated. Unfortunately, its hypertext functionality can only be
accessed through dedicated Hyper—G viewers, though client gateways to the most popular browsers by
Netscape and Microsoft exist. Therefore using Hyper—G can also be considered for a tutorial system,
but in this thesis I will focus the attention on techniques which will work with a broader user base.
For more information on Hyper—G I like to refer to [ANDREWS, 1996], who covers all the basic principles.

After these introductory words I will propose what the newest version of the hypertext markup language
can contribute to the design and creation of tutorial systems. In the new HTML 4.0 draft many ideas
were included that will radically change accepted layout practices. These additions must be regarded as
“work in progress” though, meaning that they can still be modified before the new standard is officially
released. Part of HTML 4.0 are the cascading style sheets, which are discussed in an extra section of this
chapter. The text continues with an outlook on HTML commands for guiding users through world—wide
web documents. These tags® have been suggested by [LAI ET AL., 1995] in the article “Toward A New
Educational Environment”. Finally, the chapter concludes with an overview of the advantages and
disadvantages of the new HTML commands in regard to tutorial systems.

3.1.1 Netscape’s Layers

The competition between the two major world—wide web browser producers, Netscape and Microsoft,
has frequently led to proprietary HTML commands, which were only understood by only one browser.
The competitor’s product just ignored them or did not display them correctly. Therefore, the use of
proprietary tags is generally not recommended, because a large group of users may have difficulties with
them. The new LAYER command by Netscape unfortunately belongs to the HTML tags, which must
be rated as being problematic. With the upcoming HTML 4.0 standard it will also be replaced by a
similar concept in cascading style sheets. So why do I introduce the layering technique here? The current
HTML 4.0 draft is still a “work in progress”, so the substitute for layers may disappear in the upcoming
publications. Yet layers are very useful in designing a more intuitive layout for HTML documents.
Especially in a tutorial system the presentation of information plays an important role (see Section 4.3.1).

Up to now, images were rendered in documents according to their position in the HTML code. This
technique is also called “floating”, as the image positions depend on the surrounding text only and
cannot be fixed. Many world—wide web content designers regarded that as a problem and used the TABLE
command or invisible images® as placeholders. The method is not very elegant, as the HTML code will
get more complicated and difficult to maintain. Also the results often looked differently in other browsers.
The layers on the other hand have fixed positions in the world—wide web page, and they can be set by the
developer to overlap with remaining document texts or not. The positions can only be changed with a
function written in JavaScript, whose basic concepts are described in Section 3.5.1. For example, a simple
animation is programmed by setting the x—axis value of a layered image from left to right continously.
Especially in a tutorial system, layers may be applied to point out ideas or to hide solutions from the
student. A workable example can be found in the articles by [BURNS, 1997]. Unfortunately, the following
disadvantages disapprove the use of layers:

e Finding the right position for layers may require some attempts. If layers are not supposed to

3 Strictly speaking, an anchor is the object which is the end point of a link (source or destination), and which contains

the information to enable the system to locate a persistent selection within a node ([HALL ET AL., 1996]). In HTML the

terms anchor and link are used interchangeably though.

“Tag” is a synonym for “HTML command”.

5 An image which is invisible to the user with the help of transparent colours. The document text will flow around the
boundaries of the image nevertheless.

22 Hypertext Markup Language Extensions [Section 3.1]

overlap with the document text then extra space in the size of the image must be reserved by the
developer in the document code.

e Only Netscape’s Navigator 4.x is capable of displaying layers. Other world—wide web browsers
will ignore the layer tag, but unfortunately not the image tags. So, all the images, which were
supposed to be layered, will be shown at once, consequently often making the document unreadable.

e The layer tag will not be supported by the HTML 4.0 standardisation commitee.

The following section on cascading style sheets will show the benefits of a layering technology in layout
design, but unlike Netscape’s layers, moving positioned style sheets is not yet supported. Instead simple
animations must be written in Java, which will require more programming skills. Luckily the W3CS
document object model working group is currently focusing on dynamic aspects of HTML, which will
include moving rendered document objects on a web page. [FURMAN & Isaacs, 1997] discusses that
topic in detail.

3.1.2 Cascading Style Sheets

Cascading style sheets, which are abbreviated as CSS, are actually part of the new HTML 4.0 specifi-
cation, but their new possibilities to define layouts for world—wide web pages require a chapter on their
own. [RAGGETT ET AL., 1997] writes on the use of style sheets:

Style sheets simplify HTML markup and largely relieve HTML of the responsibilities of presentation.
They give both authors and users control over the presentation of documents |...]. Before the advent
of style sheets, authors had limited control over rendering.

Style sheets can be defined by both content providers and world—wide web users. Their representation
language, which has adopted characteristics of object—oriented programming like the hereinafter dis-
cussed pseudo—classes, controls the appearance of each HTML tag by assigning layout preferences, like
colour or font size, to the properties of an HTML command individually. In document texts the modified
HTML tag is used as in previous HTML versions, but it will now be displayed according to the settings
in the cascading style sheet. Therefore, the layout and the contents of a world—wide web document can
be separated from each other again. This is regarded as a breakthrough and expands the abilities of web
page designers, who were getting more and more frustrated by the previous limitations of HTML. As
already mentioned in Section 3.1.1 content providers tried to sidestep the stylistic limitations of HTML
by using tables or images. Although the intentions to improve presentation in this way were good, some
documents became unreadable for many user. [RAGGETT ET AL., 1997] remarks that style sheets:

[...] bring back the ease of control over presentation [...]. Style sheets make it easy to specify the
amount of white space between text lines, the amount lines are indented, the colors used for the text
and backgrounds, the font size and style, and a host of other details.

For tutorial systems this means that the layout of exercise pages etc. can be freely designed now. For
example, a style sheet, which can be loaded from an external file and shared by many HTML pages, is
able to set a default to display information, e.g. text segments that appear in more than just one page,
equally. By this visual support the instructor is able to focus the student’s attention to the main topics
or goals of a course. As style sheets can also be defined by the world—wide web users, a student will have

6 World-wide web consortium.

[Chapter 3] Techniques 23

the opportunity to control the layout on his own, concentrating on his individual and personal needs.
The rules of conflict resolution, whether the author’s or student’s CSS design outlines are chosen for
displaying, can be found in [LIE & Bos, 1996]. I recommend to use the important command, which
increases the weight of a style in case of a conflict, responsibly: this will deny users the opportunity of
overriding the author’s settings. There are two main reasons for cascading (see [LT1E & Bos, 1996]):

¢ Reducing redundancy
Style sheet definitions which have been stored in separate files can be individually combined by the
world-wide web page designer.

e Author/reader balance
Authors, but also readers, have equal rights to influence the presentation of world—wide web pages
through style sheets. Both use the same definition language, thus continuing a tradition of the
world—wide web that allows everyone to publish there.

A style rule consists of two parts: selector and declarations. In general, the selector is an HTML tag,
whose property values are declared within curly brackets. If an HTML command is set between a start
and end tag of another HTML command, it will inherit the styles of the surrounding element. Classes can
be defined by adding a class name to those HTML tags which belong to that class. They are supposed to
increase the granularity of control over elements, but: “CSS gives so much power to the CLASS attribute,
that in many cases it doesn’t even matter what HTML element the class is set on — you can make any
element emulate almost any other [LIE & Bos, 1996].”

Another technique is introduced by pseudo—classes and pseudo—elements. With them, external informa-
tion can influence the appearance of HTML tags. For example, the status of an HTML anchor, which
is 1link (unvisited), visited or active, is regarded as being external; that means it depends on the
user’s previous behaviour. The difference between a pseudo—class and a pseudo—element is that pseudo-—
elements are part of CSS elements (like the first line of a paragraph), whereas pseudo—classes represent
different types of elements (like the various states of an HTML anchor, see [L1E & Bos, 1996]). To get
familiarized with the subtle distinction I will use an example from object—oriented programming: the
class “car”. A car consists of a motor, doors and windows. These are the sub—parts of a car and in CSS
known as pseudo—elements. On the other hand, a car can be produced by more than one manufacturer.
So, there will be different types of cars. In CSS words the class car would then be called pseudo—class.
In our real-life example the external influence, which controls the use of pseudo—classes and elements,
could be the bank account: it certainly specifies what car model we can afford. The prefix “pseudo” is
used to separate these CSS elements from the previously mentioned HTML classes: pseudo—classes and
elements do not exist in the HTML code, which also means that they cannot be referenced like normal
classes in the document. Actually they do not have to: as T said before the choice which pseudo—class
or pseudo—element is currently valid for an HTML tag solely depends on influences outside the HTML
document, and not on its position in the document structure.

Each HTML element which is used within a cascading style sheet is placed into a invisible rectangular
box, whose core content area and the optional surrounding padding, border, and margin areas can be
defined by the developer. These format settings control the relationship to the other element boxes
and the remaining document data. Such a box must still be seen as a floating text element of course,
whose appearance and contents are solely specified by the developer, but not the exact location. In
[LIE & Bos, 1996] many examples can be found addressing the issues of the formatting model. Another
important functionality of cascading style sheets is introduced by [FURMAN & Isaacs, 1997] with the
following words:

Designers want to explicitly control the position of HTML elements to produce rich, static HTML
documents. They also want powerful layout control to enable dynamic, animated HTML-based
content. [...] relative positioning allows elements to be offset relative to their natural position in the
document’s flow, and [...] absolute positioning allows elements to be removed from the document’s
flow and positioned arbitrarily [...]. Dynamic aspects of managing positioned elements, such as

24 Hypertext Markup Language Extensions [Section 3.1]

hiding, displaying and movement can only be performed using an external scripting language.

In contrast to Netscape’s layers, where images are the only dynamic objects, CSS text elements can be
freely positioned on a world—wide web page as well. Other positioning properties include:

¢ Visibility
The developer can choose if a CSS text element is visible or not. In a tutorial system this func-
tionality can be used to hide solutions or further explanations from the student in order to present
these when necessary.

e Layering order
It defines in which order elements are stacked upon each other. For example, it is also possible to
lay text over images.

e Overflow
If the contents of a positioned element exceed the reserved space, whose boundaries were declared
with fixed or absolute values, the behaviour of the world—wide web browser must be specified. For
example, a scrolling mechanism could be used to access the remaining data.

Many examples on behalf of positioning are found in the W3C draft by [FURMAN & Isaacs, 1997],
but T must emphasize that the standardisation process is still in an early state. For tutorial systems
positioning provides the most promising outlook. Pages are better structured and document data can be
hidden or made visible adaptively. The latter techniques will require a scripting language like JavaScript
though, but HTML alone is already gaining more and more influence on the user—friendly design of
electronic textbooks or static HTML pages. According to [LIE & Bos, 1996] the goal has been to create
a simple style sheet mechanism for HTML documents. The current specification is a balance between the
simplicity needed to realize style sheets on the web, and pressure from authors for richer visual control.
CSS does not offer pixel control or a layout language, which includes multiple columns with text—flow or
overlapping frames. Also CSS is not expected to evolve into a programming language.

3.1.3 Hypertext Markup Language Version 4.0

After explaining the new layout possibilities, I will now have a look at the remaining features that the new
HTML 4.0 standard will introduce. Here, I will focus on commands which are important for the design of
tutorial systems. As there will be more modifications compared to the currently used HTML versions, I
recommend the documents by [RAGGETT ET AL., 1997] be read for further information. Again I would
like to emphasise that the reference is a W3C working draft for review by W3C members and other
interested parties. This document may be updated, replaced or obsoleted by other documents at any time.

Until now links are generally used to visit web resources, but authors often wish to express other rela-
tionships as well. For this reason, HTML 4.0 provides new link types which help to describe the position
or function of a document within a series of other documents. Among the many new types the most
important are:

e stylesheet
The link refers to an external style sheet. Together with the link type alternate which denotes
substitute versions of a document the user will be able to select an alternative style sheet. For
instance, the web browser may offer a pull-down menu listing all the alternatives.

e start
It denotes the first document in a collection of documents. Currently tutorial system developers
often use buttons in their HTML documents to achieve the same functionality. In the future, web
browsers may be responsible for that.

[Chapter 3] Techniques 25

e next or previous
It refers to the next or previous document in a linear sequence of documents. Web browsers may
choose to preload the next or previous document to reduce the perceived load time. The use in
tutorial systems may be limited though, as the next pages often depend on the student’s answers
in the current exercise.

e contents, index, glossary, appendix, and help
These are very useful link types to direct the users straight to the desired documents. For example,
index and glossary lead to an index and glossary of the current document, respectively.

e chapter, section, and subsection
They refer to documents serving as chapter, section or subsection in a collection of documents. In
a tutorial system these may be helpful in guiding a student through the course.

There is no intention to display links that are specified by the new HTML command LINK and the types
above, together with the contents of the remaining document text. Instead, world—wide web browser are
allowed to render these in other ways, for instance as navigation tools or menu buttons. Another idea is to
use the new hierarchical link types as a guide to print a series of HTML documents as a single document.
In particular, certain HTML documents can be specified to serve as a table of contents or an index (see
[RAGGETT ET AL., 1997]). Unfortunately the proposed link command does not support one-to—many
links which are quite common in other hypertext systems like Microcosm ([HALL ET AL., 1996]). There,
one source anchor is connected to more than one target document, which can then be selected from a
menu. In my opinion there are no disadvantages against the use of one—to—many links in the world—wide
web, except for more difficult link management. The missing link management in the world—wide web
also makes the implementation of generic links impossible. [HALL ET AL., 1996] says on behalf of generic
links, that they:

[...] enable the destination of a link to be resolved at run—time calculated on the basis of the content
of a source anchor rather than simply its location in a document (p7). [...] A generic link defines
how to get to a document, not where to go from it (p108).

Again HTML 4.0 misses the opportunity to add generic links to the world—wide web, but implementing
this concept is more complicated than one-to—many links as it will require the use of an external
database or program (for example, with Hyper—-G or Common Gateway Interface (CGI) programs.
For an introduction to the latter see Section 3.4.1). Other HTML extensions have been made for
world-wide web forms which are used to accept user input that can be processed by external programs
(often Common Gateway Interface applications). These changes are mainly in the field of structuring:
thematically related form controls, like checkboxes or radio buttons, can now be grouped together, so
their purpose is more easily and quickly understood by users. Future plans include speech navigation
of form controls to make documents more accessible for people with disabilities, however any user will
benefit from this. Form controls are generally able to trigger user events, which are then processed
by functions that are written by a system developer. The list of user events has been extended: they
cover user actions, like changing the contents of a control item or mouse clicks, and the often needed
events mouse-move and key-press. Of course, this functionality can only be used in conjunction
with a scripting language like JavaScript, so further details will be mentioned in Section 3.5.1. In
respect to HTML the new commands alone will definitely improve the appearance and user accep-
tance of the world—wide web. However, additional link types will still be needed to gain a reference
structure which is more suitable for education. [LAI ET AL., 1995] suggests these HTML commands
in his article “Toward A New Educational Environment” which will be introduced in the following section.

3.1.4 Toward A New Educational Environment

In their project [LAI ET AL., 1995] constructed a new educational environment, in which cooperative
learning and teaching can be provided regardless of a student’s location or time of access, by using the

26 Hypertext Markup Language Extensions [Section 3.1]

world—wide web as their underlying medium. Despite the benefits the world—wide web provides, like
accessibility and simplicity in creating web pages, they had the problem that students were often “lost—
in—hyperspace”. A standard world—wide web browser just allows learners to go back or forward in pages
that have already been visited, but this functionality is too limited for a tutorial system. In addition,
the students regularily missed documents, because they did not know of their existance, and therefore
could not find them (see [LAT ET AL., 1995]). In order to find a solution they came up with the idea to
use new HTML tags which were supposed to better organise the documents of a course. Currently an
external program is responsible for giving the student an overview map and some guidance to the course
by analysing the new HTML commands, but its functionality could also be included into a web browser
one day. The recommended HTML tags are:

e <PARENT HREF=‘‘...7’>
This organisation link is put in the child document to point to the parent document. Actually the
idea behind this tag is very similar to the link types chapter, section and subsection, which are
mentioned in section 24, but the implementation of HTML 4.0 will have to show that before any
comparisons can be made. At the moment, the organisation link provides a simple way to tell the
user, from which document the current text is derived. In this way the number of levels or ancestors
is not limited.

e <CHILD HREF=‘...””>
This HTML tag is very similar to the parent link above. As its name suggests it will be put into
the parent document to point to the child document. The tutorial system uses this information to
generate a tree structure of all the documents in a course. Consequently, this can be used to point
out the student’s current location in a course at any time.

e <PREREAD HREF=‘‘...?”” LEVEL=‘...”>

Content providers can specify the HTML documents, which must be read before the current HTML
page. Otherwise the student will not have the possibility to access the document. Unfortunately
this tag has no equivalence in the current HTML specifications, although its advantage for tutorial
systems is obvious: students will not be able to get to advanced subjects before they have read
all the introductory texts. To achieve this, the web browser is responsible for storing a history of
all accessed pages and the history list must not be deleted before the course is finished. In Lai’s
work this is currently done by an external CGI program called guider. If a student activates the
guider, it will monitor the learning path of the student. For instance, if the student tries to access
advanced documents, the guider will respond with a list of HTML pages that contain preliminary
information. With the level argument the lecturer is able to control what documents shall be read
by novices, intermediates or experts. This may help to create a tutorial system which presents users
the most suitable documents in respect to their knowledge state.

Additionally Lai’s guider also records the learning history of all users, so if a student has a problem
he can ask who has read the documents before. Then the guider will return a list of names and email
addresses. Both students, the novice and the expert, will benefit from this: novices get explanations by
fellow students, while skilled students learn how to express their knowledge (also possible in a cooperative
work area, see Section 4.3.2). The ideas introduced by [LAI ET AL., 1995] are very useful for tutorial
systems. They especially help the developer to control the order in which documents are accessed by
students. With web browsers currently available this must still be done externally, so the developer is
required to have programming skills in a scripting language at least.

3.1.5 Discussion

This discussion is solely based on the advantages and disadvantages of HTML 4.0 and CSS for tutorial
systems without any extensions like plug—ins, scripting languages or Java applets. Although these tech-
niques rely on HTML, their benefits are mentioned in the following chapters. With the help of HTML
implementing an exploratory learning environment is possible, but the hypertext system itself cannot
offer any adaptive control of the students’ activities.

[Chapter 3] Techniques 27

® Integration
In general, HTML 4.0 is the basis for world-wide web documents, so all the techniques, which
are introduced in this thesis, depend on it (except for stand—alone Java programs). Therefore,
plug—ins, CGI programs, JavaScript functions, and Java applets can be integrated into HTML 4.0
documents. For a tutorial system I recommend using this possibility in order to present an individual
and interactive environment to the student.

(® Standard

World—wide web users and developers can rely on a single standard, which is generally accepted by
the browser manufacturers, for writing and accessing world-wide web documents. HTML 4.0 even
offers the opportunity to implement a common document structure on the web with the help of
the new link types. For example, if a browser renders these types in the form of a pull-down menu,
the user will immediately be able to select the “table of contents” of a series of documents in all
the world—wide web sites which apply the new link types in their pages. In addition, HTML 4.0 is
compatible to previous versions.

@ Local
HTML documents can be downloaded and stored on disk by the students. Therefore, a permanent
connection to a world—wide web server is not necessary. Consequently, the work load on the server
is reduced, and a slow internet connection, for example by modem, does not influence the usability
of the system.

® Portability
In general, HTML 4.0 is platform—independent, but for each operating system or computer architec-
ture a browser which can interpret the new HTML 4.0 commands must exist. Netscape’s Navigator
and Microsoft’s Internet Explorer partly support HTML 4.0, but their implementations differ from
each other. However, this will certainly change in future releases.

® Author/reader balance
CSS offers the possibility of overwriting the author’s style sheets. Thus, students can set their own
preferences for rendering documents.

@® Structure
With the help of CSS, structuring world—wide web documents becomes easier, for example a common
layout can be defined for a series of documents. In addition, the separation of layout and document
contents is possible.

(® Availability
At the time of writing HTML 4.0 is still a “work in progress”, so it is not yet fully implemented in
current world-wide web browsers.

(® Interactivity
HTML 4.0 does not offer any form of interactivity for the learner. The new event types are only
available if event handlers are written in a scripting language. Consequently, if a tutorial system is
solely implemented in HTML 4.0, the student and the system mostly work independently of each
other.

(® Link management
The new HTML 4.0 standard does not include a better link management or one-to-many links.
This functionality can only be achieved if an external program, like CGI, is used. In addition,
the new HTML commands mentioned in Section 3.1.4, which provide an easy method of defining
dependencies between documents, will not be standardised in the near future.

3.2 Knowledge—Based Hypertext Transfer Protocol Server

Many knowledge—-based systems have been implemented during recent years, and their research is still
playing an important role in computer science. Unfortunately, these systems often lack the possibility
to be universally accessible, as they were mainly planned for stand—alone usage. On the other hand the

28 Knowledge—Based Hypertext Transfer Protocol Server [Section 3.2]

world—wide web provides global access by definiton, but it lacks the intelligent methods to store, retrieve,
analyze, filter, and present information. The idea was to combine the two techniques to strengthen
the links between artificial intelligence researchers and the distributed hypermedia community. In the
following sections I will introduce the result of these partnerships, the Common Lisp HTTP server’. I
will start with the programming language Common Lisp, its embedded object—oriented programming
language CLOS and the presentation systems CLIM and W3P. Furthermore there will be a short
overview of the hypertext transfer protocol HTTP, before the Common Lisp HTTP server is discussed.
As this master’s thesis is concerned with the possibility of adapting tutorial systems to the world—wide
web, I will present an example which has combined an already existing tutorial system with the Common
Lisp HTTP server. Finally the chapter concludes with a summary of the advantages and disadvantages
of the proposed technique.

3.2.1 Common Lisp

Lisp is a programming language, which [KEITH, 1997] introduces in his lecture by citing Edsger Dijkstra:

Lisp has jokingly been called “the most intelligent way to misuse a computer”. I think that
description is a great compliment because it transmits the full flavor of liberation: it has assisted a
number of our most gifted fellow humans in thinking previously impossible thoughts.

According to [KEITH, 1997] the advantages of Lisp are: weak variable typing, a simple syntax, and
programming environments resulting from 30 years of artificial intelligence research. Lisp itself is an
interpreted language, which makes interactive testing possible, and it provides many facilities for symbol®
manipulation, which is a key aspect of artificial intelligence. In addition, symbol manipulation is especially
needed for building interpreters and compilers for other programming languages. Common Lisp is the
official Lisp standard, and has currently gained the most influence. [MALLERY, 1997] thinks that Common
Lisp is one of the best available choices for developing a fine-grained vocabulary of operators (functions)
that programs and software developers share. Due to a modularized structure operators do not have to
be written again, and can be called by any program. This leads to high productivity because:

e Abstracted code is easily evolved as requirements change.

e Only compiling the newly added operators speeds development of large programs and facilitates
evolutionary programming.

e A vocabulary of operators is build up and used in solving similar problems.

With structured and well-designed software development the same level of productivity is reached with
any programming language, but in function—-compositional languages like Common Lisp it is inherently
encouraged ([MALLERY, 1997]). Common Lisp contains a native object—oriented programming language,
which is called CLOS®. Like many other object—oriented languages CLOS encourages the software
developer to design flexible program modules for code sharing. It also supports multiple inheritance,
virtual functions, and argument matching, which is necessary if functions with the same function names
exist. Modern Common Lisp contains a high-level window system tool, the Common Lisp Interface
Manager CLIM, which is written in Common Lisp and uses machine-independent abstractions to define
window interfaces. In the final system these abstractions are replaced by specific GUI code, so the
look and feel of an user interface does not change. An important CLIM abstraction is the presentation
system which controls how the user perceives Lisp objects. The presentation system consists of various
presentation types which specify the class methods for each object. These class methods are responsible
for displaying and accepting an object or receiving user input ([MALLERY, 1997]):

7 Abbreviated as CL-HTTP server.
8 A symbol is a physical entity, often just called entity.
9 Common Lisp Object System.

[Chapter 3] Techniques 29

In general, presentation types specialize built—in or constructed Lisp types. Presentation translators
can be defined to convert from the Lisp object associated with one presentation type to another
[...]. Once defined, these presentation types mediate all data entry and display, and thus, users
perceive only the external, user—friendly representation, and never the internal representation.

CLIM acts as a translater between the abstract but independent user interface definitions and the
system specific window commands. As this technique is not limited to traditional window systems, we
can also adapt it to the world—wide web: if HTML code is returned, the user interface can be displayed
in a web browser. Although CLIM is more flexible than the world—wide web user interface, it can also
be configured to function in a stateless model like the world—wide web. There it must work without a
persistent connection to the user, and regard the performance requirements of a server. Due to these
restrictions, W3P was introduced, which Christopher Vincent describes as:

[...] an abstract, extensible Common Lisp system for manipulating input and output as CLOS
objects, allowing simpler applications with less code duplication. To facilitate compatibility with
existing LISP applications, W3P implements a subset of the Lisp interface to the Common
Lisp Interface Manager [...]. W3P represents an effort to create a streamlined, highly portable,
non—proprietary presentation system [...].

The W3P system cannot replace CLIM, because many capabilities of CLIM do not have an equivalent in
the world-wide web, but on the other hand, these missing functionalities do not become an unnecessary
overhead. The W3P system uses the CLOS class inheritance, so presentation views can be defined that
are specialized on different content types or styles. The same idea is used in the W3P condition and
error handling: for instance, applications require different responses for input errors, so either the user
is asked for the missing input data or the system proceeds without an error message, and therefore
saves valuable network and server resources. Consequently, W3P is especially valuable for HTML form
processing, because through its design it allows a dynamic and flexible interface that is individually
generated and parsed for each user. Due to class inheritance an application can exactly specify what
user input is required whenever an error has occured. Future plans for W3P include more powerful
user interfaces on the world—wide web as well as client—side extensions, which allow preliminary validity
checking of user input. The latter can, for example, be done with the help of JavaScript, which will be
discussed in Section 3.5.1.

The proposed ideas and abilities are not solely restricted to Lisp and its derivatives. In my opinion
it is possible to adapt the discussed object and presentation models for any programming language
by carefully keeping the underlying design, i.e. modularity and abstraction, in mind. However, the
availability of Lisp and the wide—spread use and experience in artificial intelligence research make Lisp
an important option for tutorial systems.

3.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol, abbrievated as HTTP, was established in 1990 and is now the most
wide—spread application—level protocol for distributed, collaborative, hypermedia information systems.
If someone is talking about a world—wide web server, the underlying protocol is almost certainly HTTP.
The first version of HT'TP was a simple protocol for raw data transfer across the internet, but in the last
few years the protocol has been improved. Now it allows messages to contain metainformation about
the data transferred and modifiers'® on the request and response semantics. To locate a resource in the
internet HTTP uses Uniform Resource Identifiers (URI), which are often given as a location (URL)
or a name (URN). The paper by [INTERNET ENGINEERING TASK FORCE, 1997] describes the overall
operation of HTTP as follows:

10 For instance, for special requirements of cache behaviour.

30 Knowledge—Based Hypertext Transfer Protocol Server [Section 3.2]

The HTTP protocol is a request/response protocol. A client sends a request to the server in the
form of a request method, URI, and protocol version, followed by a MIME-like message containing
request modifiers, client information, and possible body content over a connection with a server. The
server responds with a status line, including the message’s protocol version and a success or error
code, followed by a MIME-like message containing server information, entity metainformation, and
possible entity—body content.

The HTTP protocol is usually above the transport protocol TCP/IP, which is responsible for a
connection—oriented and reliable transport of data frames. However, any other transport layer protocol
can be used as long as the quality of service is similar to TCP/IP. Nevertheless, it is the responsibility of
HTTP to offer a highly reliable communication channel, or failing that, a reliable indication of failure.
New extensions to HTTP, that are focused on education, are suggested by [PING-JER ET AL., 1996] in
the article “Synchronous Navigation Control for Distance Learning on the Web”. Up to now web devel-
opers tried to restrict the pedagogical limitations of the world—wide web by using guided tours, overview
maps etc., but these help tools were solely for the benefit of the student instead of addressing the whole
instructor—learner relationship: “[...] they [instructors] merely construct course material, put them on the
WWW, and then go behind the scenes, providing little positive aids to learners. Therefore, instructors are
absent from the actual learning progress of learners.” The new solution is now to provide a way in which
the instructor can interact with the learner by guiding the student’s navigation behaviour in the course
directly. Therefore, the student gives the control of world—wide web document retrieval, browser window
scrolling, mouse positioning and highlighting of texts to the lecturer, who on the other hand can decide
whether he wants to advise one or many learners simultanously. The extent of navigation control must be
balanced between the student and the lecturer, so the learner is involved and as a result highly motivated.
Forcing the student to watch mouse movements and scrolling, thus reducing him to a passive role, is
therefore not advisable. Since communication in this category involves WWW servers, HTTP is used for
underlying message transmissions. The protocol specification can be found in [PING-JER ET AL., 1996].
The advantages of this technique are obvious: the tutor can show the user directly what he has to do,
where the key problems are, and how he should start. This is very similar to classroom instruction, but
there is no longer a need to have tutors or lecturers on—site. The developer of a tutorial system, which
is based on CL-HTTP, can easily extend the CL-HTTP functionality to support navigation control as
the server is programmable and the source code is freely available. Unfortunately most world—wide web
browsers will not understand the navigation control requests (like the HTML extensions of Section 3.1.4).

As we can see, the work on the HTTP standard continues, however with less emphasis on educational
issues than on security, caching, and connection handling. For the latter, HTTP 1.1 introduces the
possibility to use a connection for more than one request-response exchange: previously a new connection
was built up for each data communication and was immediately terminated afterwards. The new “server
push”!! however will keep the connection open, and so it will be interesting to see whether this new
functionality will make possible the efficient use of CLIM for the world—wide web.

3.2.3 Common Lisp Hypertext Transfer Protocol Server

The Common Lisp HTTP server was specially designed by John Mallery at the M.I.T. to link artificial
intelligence applications written in Lisp to the world—wide web. As knowledge—based systems often build
the core of a tutorial system this HTTP server may be used as an external extension to provide tutoring
and education over the internet. According to [MALLERY, 1997] the main intentions to develop the
CL-HTTP server were:

e High—productivity programming
As a functional language Common Lisp offers advantages which have already been described in
Section 3.2.1. In addition, most of the systems that John Mallery was using had been written in
Lisp before, so choosing the same language for the HTTP server was a feasible decision. So, if the
existing research systems grow, the possibilities of the server can therefore evolve as well.

I See [NETSCAPE DEVELOPER, 1997¢] for a detailed description.

[Chapter 3] Techniques 31

e Multiple transport media
John Mallery needed a technology which was able to work with different transport media, like email
or HTTP.

e Automatic form—processing
The research team at the M.I.T. had already gained some experience in automatic form—processing,
so the same functionality was implemented in the server. Consequently, for system developers the
often repetitive tasks of form—processing were reduced as well.

e Dynamic HTML generation
The output of the research systems had to be processed for each user individually, so methods for
flexible, dynamic, and adaptive world—wide web page generation were required and integrated.

For John Mallery programming the server in Common Lisp was the most suitable solution. Lisp makes a
fine—grained vocabulary of operators possible, and can be quickly adapted to changing HTTP protocol
standards. It allows rapid—prototyping and possesses datastructures that go beyond those available in
scripting languages for computing and processing HTML forms. As user interaction with a tutorial
system requires HTML forms for input, the latter point was essential. Additionally the appearance
and the acceptance of a tutorial system depends on its user interface, so complex form processing by a
fully—featured programming language is recommended. The CL-HTTP server contains all the important
features of other HTTP servers or the HTTP 1.1 standard, so it is a powerful substitute and does
not restrict the potential user base. It supports for example, all major HTTP methods like GET and
POST, Java and JavaScript, client—side plug—ins, logging, and network security based on clients’ IP
addresses. Thanks to the object—oriented implementation with CLOS, generic operations can be defined
for handling error conditions, or URL and server objects. In addition, W3P simplifies creating user
interfaces in the world—wide web, because its presentation types describe all the data types which are
either presented or received from the user.

In general, the system developer must write Common Lisp functions for computing responses to incoming
HTTP requests. These functions reply to the HT'TP methods GET or POST and arrange the appropriate
status codes and headers, which are then returned to the client. The continuous development of the
CL-HTTP server has already led to Common Lisp functions for handling Cookies'?, HTML meta infor-
mation'®, and connection control, e.g. maintaining a connection to the client. Every HT TP request creates
an instance of the class SERVER which stores all the information relevant to the transaction. Special care
must then be taken with responses: as CL-HTTP can answer multiple client requests simultaneously,
collisions must be prevented while accessing a shared resource.

3.2.4 Example: Episodic Learner

One application which has been based on the CL-HTTP server is the Episodic Learner Model Adaptive
Remote Tutor, abbreviated as ELM—-ART. It is a tutorial system which is used in an introductory Lisp
course at the Universitit Trier in Germany. According to [WEBER & SPECHT, 1997] ELM-ART is
based on ELM-PE, a previous application that was restricted to a small user group by its size and its
platform—dependent user interface. Unfortunately it was not possible to adapt the existing system to the
world-wide web directly, so with the help of the CL-HTTP server the web based version “ELM-PE” was
introduced. Like its predecessor it supports example-based programming, intelligent analysis of problem
solutions, and advanced testing and debugging facilities. ELM-ART has been updated since and is now
available as version ELM-ART II. One of its design features is to store an individual model for each
learner, which is updated automatically when a student accesses the tutorial. In the system itself pieces
of information, for example texts or concepts, are structured in slots, which are called dynamic if they
depend on the learner model. The other types are: static slots for prerequisites or related topics, test
slots for describing a group of test items and problem slots for defining a programming problem. These
information slots are used to build up units, which are then organised like a textbook into lessions,
sections or terminal pages. When the student is working with the tutorial system, the individual learner

12 Persistent client—state HT'TP information, see also Section 3.5.2.
13 Special header information, often used for “client pull” as described in the document [NETSCAPE DEVELOPER, 1997¢].

32 Knowledge—Based Hypertext Transfer Protocol Server [Section 3.2]

model will guide him by using “traffic lights” — the colours red, yellow and green — as a metaphor to
annotate units or links in the table of contents adaptively. Therefore the units to be learned or visited
next are suggested for each student according to his current state of knowledge. Additionally a technique
called individual curriculum sequencing was introduced for situations when:

[...] users may be confused about what the best next step should be to continue with the course.
This may happen when the learner moves around in the hyperspace and loses orientation. Or, the
learner wants to follow an optimal path through the curriculum in order to learn as fast and as
completely as possible. To meet these needs, a NEXT button in the navigation bar of the text pages
allows the user to ask the system for the best next step depending on the current knowledge state of
the particular user ((WEBER & SPECHT, 1997], p8).

Thanks to the CL-HTTP server ELM-ART is accessible by users all over the world, but how do the
two systems work together? Gerhard Weber answered that question in an electronic mail. He wrote that
the interaction between ELM-ART and the CL-HTTP server was rather simple as all the code was
written in Lisp and controlled by the server. Therefore no connections to any other applications had to
be established. The information stored in the individual learner model was used to create HTML pages
by calling Lisp functions, so except for start or welcome pages no other HTML pages were needed in
their courses. All pages that were sent to the client were solely generated within the CL-HTTP server.

3.2.5 Discussion

The main feature of the CL-HTTP server is the integration of existing knowledge bases written in Lisp
into the world—wide web, so these can universally be accessed by the students.

® Availability
As the source code of the CL-HTTP server is written in Common Lisp it can be implemented on
platforms for which a Common Lisp compiler is available. This includes Windows, Apple, Unix etc.

@ Integration
According to [MALLERY, 1997] the CL-HTTP server offers the support of client—side plug—ins,
JavaScript, and Java. In addition, it implements the form methods GET, POST etc. which are required
for the CGI program interface, but also used by Common Lisp functions to compute responses to
incoming HTTP requests. Consequently, world—wide web documents can be dynamically generated.

® Extension
The CL-HTTP extends the world—wide web providing the possibility of including knowledge-based
systems which are frequently used for tutoring systems. Modifications to existing systems written
in Lisp are reduced to a minimum, as the server itself uses this programming language. In addition,
the server can also be extended by system developers as the source code is freely available.

@® Standard
The Common Lisp language is standarised and the CL-HTTP functions, which are included to
process the students’ requests and responses, are developed by the M.L.T., so the programming
interface is essentially available from a single source.

® Future releases
The CL-HTTP server is developed at the M.I.T., so it could happen that new HTTP standards or
extensions may not be included in the CL-HTTP releases, but as the source code is freely available,
these modifications could be made by a tutorial system developer.

(© Programming experience
Development and integration of knowledge bases requires programming experience in Lisp.

[Chapter 3] Techniques 33

(® Local
The CL-HTTP server must collect the students’ requests, query an underlying knowledge base,
and compute the responses which are then returned to the clients. The work—load of a server is
therefore high.

3.3 Authoring System and Courseware Plug—In

The first releases of world—wide web browsers were restricted in the data types they could display
within their document window!'4. At the beginning of the internet these were regular HTML texts and
.xbm'® and .gif'® image formats, whereas all other types of information had to be viewed with the use
of external programs. Obviously this technique is not desirable for an easy—to—use and intuitive user
interface: beginners had problems in setting the correct parameters for external programs, inline data
and external data were displayed separately from each other, and vital system resources were necessary
to call the external program, especially if the program was just required to display data. Soon the
browser manufacturers came up with the idea of setting a standard to extend the abilities to present
data in the browser window, without the previously mentioned disadvantages. This standard could be
used by any software developer then to design lean program modules, called plug—ins, for making any
type of information available to the world—wide web community without the need of external viewers. In
the following sections I will introduce the general ideas behind these plug—ins, then focus on those which
were especially written for computer—aided education, and conclude with an example and a summary of
the advantages and disadvantages of plug—ins.

3.3.1 Plug—In Basics

I will explain the concepts of plug-ins based on the documentation and API'" by
[NETSCAPE DEVELOPER, 1997B], especially as writing plug—ins for Microsoft’s Internet Explorer
is also supported by the same software package as well. Whether an APT of one browser manufacturer
supports all the functionalities of the competitor’s counterpart may be questioned though. Nevertheless
I assume that the observations mentioned in this chapter are easily adapted to a competing product by
a professional plug—in developer. As explained in the introduction, a plug—in is a separate code module
that behaves as though it is part of a browser. By using the API the intention is to increase the number
of data types that are supported by a web browser. Firstly, this replaces external viewers because data
can be displayed within the browser window now, but secondly, these extensions make a more flexible
and interactive user interface possible. Therefore, it is clear that a plug—in developer needs full control
of the web browser itself. All the internet functionalities such as obtaining data from the network
by using URLs, must be supported as well as the receipt and handling of events triggered through
user interaction. In addition, there must be methods to display data in the browser window. Custom
made C/C++ functions help the developer by working with URL streams, web browser controlled
memory allocation etc., so basically the programmer must decide what services he wants the plug—in to
provide and which MIME!® type and file extension it will use. However, I must emphasize here that a
plug—in API is a native code library, this means that for each computer platform, on which a plug—in
is supposed to run, an own proprietary API is necessary. In this respect I would again refer to the
[NETSCAPE DEVELOPER, 1997B] documentation, which contains all the signatures'® and descriptions
of the provided API functions, sample implementations, and proposed plug—in development steps. The
advantages and disadvantages of the platform—specific and media type driven design are mentioned in
[NETSCAPE DEVELOPER, 1997B], but nevertheless I will summarize the most important advantages
here:

e High performance because of native code implementation.

Data which is rendered within the browser window is also called “inline data”.
X-bitmap file format.

Graphic interchange format.

Application Programming Interface.

Multipurpose Internet Mail Extensions.

Signatures specify the name and the parameter types of functions.

34 Authoring System and Courseware Plug—In [Section 3.3]

e Specifically designed for extending the capabilities of a browser, so relatively simple and lightweight
modules can be used.

e Plug—ins can be written in C or C++ using existing development tools.

The last but one resulted from a comparison with interapplication architectures like OLE?® and OpenDoc.
As most plug—ins support basic functionalities like displaying a special MIME type only, the lean code
is understandably preferred to the overhead of the standardised OLE or OpenDoc architecture. The last
argument however, which was made in connection with Java applets criticising that these require coding
in a new language with new development tools, is not clear to me: the language Java is only slightly
different to C/C++, and the ways of programming are very similar. Despite the benefits of platform—
specific code, plug—ins inherit one severe disadvantage. In contrast to platform—native interapplication
architectures and platform—independent programming languages (see [NETSCAPE DEVELOPER, 19978]),
plug—ins cannot be simply transfered to other systems (intentionally?). Most companies, which develop
plug—ins, must therefore decide whether it is feasable for them to support systems other than the
wide—spread Microsoft Windows or Apple. So once more the prior intention of HTML and Java to be
universally understood is threatened by the use of proprietary concepts. Unfortunately, the two plug—ins,
which I will introduce in this chapter, do not run on any other system than Microsoft Windows or Apple,
and no alternatives are currenly available to make courses written with the two leading toolsets for
courseware production, Macromedia Director and Asymetrix ToolBook, accessible for world—wide users.
Although at Technische Universitdt Miinchen the targeted student group for a tutorial system is mainly
restricted to HP-UX or SunOS platforms, I will nevertheless discuss the possibilities of these educational
plug—ins as they provide a beneficent technique for content providers to run their applications over the
internet, and in addition many students have their own Microsoft Windows PC at home.

After the user has downloaded a plug-in and installed it?', the world-wide web browser will be able to
use the new module from that moment on. How will the still separate code extension work together with
the browser? If the tags EMBED or OBJECT are found within an HTML page, a plug—in with a matching
MIME type is looked for. In case of a successful query the module code is loaded into the memory,
initialized, and a new instance of the plug—in is created. The time that a plug—in resides in memory is
solely controlled by the web page, and not by the plug—in itself. As long as the surrounding web page is
loaded, the plug—in will not be removed. In addition, multiple instances of the same plug—in are possible,
and consequently if the last instance is deleted, the browser will free the memory space previously
reserved for the plug—in code (see [NETSCAPE DEVELOPER, 19978B]). Once a plug—in is displayed in the
browser window, it does not mean that it must work independently from the other objects of the web
page. In order to handle various multimedia contents and increase their capabilities, plug—ins can call
Java or use Java and JavaScript controls. They can also provide parts of their functionality to other
objects. The direct communication with Java and JavaScript (through a Java interface) is established
with the help of LiveConnect. The highlights of LiveConnect will be explained in Section 3.5.3 later on.

Since the first introduction of plug—ins the amount of written and installed code modules has steadily
grown, thanks to the ease—of-use for the web user. Other benefits include making existing applications or
documents universally accessible without rewriting them, and providing interactive page contents, though
these are replaced more and more by Java applets — despite their higher programming complexity (see
Section 3.6.1). In addition, external programs that consume important resources are not necessarily
needed anymore for simple tasks, like displaying data, when browsing the world—wide web. A good
overview of available plug—ins can be found at the internet site of Netscape, whose list is updated
continously.

20 Object Linking and Embedding.
21 This procedure has already been simplified: whenever the web browser requires a plug-in that is not currently installed,
it will be made available automatically.

[Chapter 3] Techniques 35

3.3.2 Authoring Systems and Courseware

According to [SCHULMEISTER, 1997] authoring systems have their background in the programmed
learning model, which was derived from Skinner’s theories of operant conditioning (p93). Basically,
the course domain is split up into tiny fractions, which are called “frames” and presented to the user.
The system must wait for a reply by the student, and compare the student’s answer with the right
solution. In case of a correct answer the student is rewarded by the system. Authoring systems now
support the developer in writing such a computer—aided tutorial by offering standarised components
which describe frequently occuring structures of educational software ([SEIDEL, 1993]). Unfortunately,
the expectations in both, the authoring toolset and the final system, were too high. Early versions just
offered a linear learning path through the course, the programmed learning model was soon criticized be-
cause of its limited feedback to the learner, and the development process of applications was not simplified:

The relatively low difficulty level in using authoring systems is a consequence of the missing
programming knowledge of authors. This is possible because an authoring system imposes a strict
algorithm with which the exercises are presented. Consecutively, ease—of—use is therefore paid for
by limitations in performance [...]. Despite this attractive user philosophy the idea behind it did
not work. [...] Because of the low demands in system and programming knowledge it is quickly
overlooked that [...] authoring systems require the teacher to know at least how to split the course
into tiny steps, how to combine the steps logically and consistantly, and how to give suitable feedback
or reward to the learner in case of success or failure. ([SCHULMEISTER, 1997], translated, pp103/104)

Despite the limited orientation of learning goals and lack of intuition and flexibility, [SEIDEL, 1993] sees
two major benefits:

e Clear course objectives

e Precise methodological proceedings for students.

However, the first and very promising studies of the use of authoring systems could not withstand
an in-depth evaluation, and it was even feared that poorly designed systems with lack of didactic
imagination would reduce the acceptance of computer—aided instruction in general. Nevertheless,
criticisms of authoring systems has led to the development of an improved version, which was called
courseware. The theoretical backgrounds of authoring systems and courseware are closely related, but
[SCHULMEISTER, 1997] sees the main difference in the teaching method by quoting Jonassen: “Tutorial
courseware is basically a mis—application of the programmed learning model of instructional design.
(p107)”. The strict mechanism of waiting for a student’s reaction and deciding the course flow upon
that was made more flexible, or it was not implemented at all. Still, interactive instruction used in
courseware is often an extension of Skinner’s programmed instruction, but courseware has already
gained more pedagogical success than the early authoring systems ([SCHULMEISTER, 1997], pl107).
Taking advantage of that, courseware is mainly concerned with the development of drill-and—practice
programs, which still play a major role in computer education despite their restricted knowledge domain.
Examples and design rules for courseware are mentioned in [SCHULMEISTER, 1997], so I will not
discuss these. Instead I will focus my discussion on the main commercial courseware packages by Macro-
media and Asymetrix, which offer universal access to their courses by providing plug—ins for their systems.

3.3.2.1 Example: Macromedia Director, AuthorWare, and Shockwave

Macromedia Director is a wide—spread development system for any type of multimedia software. Each
multimedia application is organised like a movie and contains animations, sound, video, and Lingo
scripts, where all these compontents are called “members”. Lingo is an object—oriented programming
language responsible for user interaction and movie control that goes beyond the movie “score”, which
determines the role of each member. It is based on the programming language C and offers concepts like

36 Authoring System and Courseware Plug—In [Section 3.3]

classes, instances and inheritance. Often it is used for message handling as described by [WELscH, 1996]:

While a movie is running various events can occur, which require a reaction by the program [...].
Director creates a message for each event that is sent to an precisely determined group of objects (i.e.
scripts) for processing. Some events, which appear frequently, [...] are already defined in Lingo. The
scripts, which are attached to the various objects of Director, communicate through a well designed
scheme of messages, and so they allow complex reactions to different situations (translated, p267).

The main advantages of such a development system for multimedia applications, compared to standard
programming languages like C++ or Java, are obvious:

e Beginners find the drag—and—drop and object—oriented user interface easier to use than having to
learn a programming language first.

e As in rapid prototyping multimedia contents can be visualized quickly, and therefore development
costs can be reduced by detecting design errors earlier. The scripting language Lingo misses special
constructs like pointers and lacks in performance — though it reaches a remarkable 70% compared to
C ([EBERL & JACOBSEN, 1997], p26) — but still its functionality is appropriate for most projects.

Macromedia has introduced AuthorWare for writing tutorial systems, which should not be confused with
authoring systems mentioned above. A special advantage of AuthorWare is the possibility to track the
student’s performance in recording the response time, the number of tries for an exercise, or the objects
on which a user clicks. For example, in the variables CorrectChoicesMatched, WrongChoicesMatched,
FirstTryCorrect and FirstTryWrong the information that the application needs to return individual
feedback to the student is stored. After a developer has finished creating a tutorial system, AuthorWare
and Director applications can be modified by the compression tool, Afterburner, to run under the Shock-
wave plug—in for world—wide web browsers. Generally, there are no restrictions in writing Shockwave
movies except for (taken from [EBERL & JACOBSEN, 1997], pp433/464):

e Key events
These work within the embedded Shockwave section of the document window only if the last mouse
click was in that section.

e Lingo

Almost any Lingo command operates under Shockwave except for file operations that access the
user’s hard disk directly. This limitation was necessary to prevent security leaks via the internet,
however the use of external assets?? and preference files is still possible. Whenever these file opera-
tions are necessary, the user must explicitly confirm them, for example by downloading the external
assets or answering a dialog box. In my opinion the user is left alone in making such a decision.
Unfortunately there is no neutral instance rating the security issue of third—party assets or hard
disk accesses, so either the user accepts an unknown application or he does not have the possibility
to run it at all. A tutorial system developer must therefore keep in mind that potential users might
deny doing a course, as storing the user’s progress is ideally done in a preference file, which will
require the user’s permission.

¢ Download time
Despite the compression tool, Afterburner, the developer of Director movies or AuthorWare tutorials
must always keep the low data transmission rates in the internet or by modems in mind. Of course,
this restriction will not play a major role if the targeted user group is able to access courses by a
local network. However, then the advantages of remote training, e.g. running a course at any time
from any place, will be lost.

22 «Assets” are the basic materials for multimedia applications, e.g. text, image, audio or video files.

[Chapter 3] Techniques 37

The examples at the Macromedia world—wide web site briefly show the abilities of Shockwave applications.
Unfortunately at the time of writing no tutorial systems were available there except for a smaller course
on how to rebuild the skeleton of a dinosaur with the use of bones displayed on screen. Bones can be
picked up and dragged around. If two bones fit together then their joints are connected, otherwise the
currently selected bone will fall back to its previous position. A more advanced Director application is
“Word—-O-Matic”2?® which introduces with circular pop up menus a new idea in the design of graphical
user interfaces. As the name suggests, the commands or menu items are arranged in a circle. One positive
outcome is that humans memorize for each menu item a cardinal point where they must move the mouse
to reach a certain command, so after a few attempts this process is automised and menu items can be
chosen even before the circular pop up menu is displayed. The use of circular pop up menus is quickly
understood by the user, and as the author says: “the tools become gestures, easily learned in the user’s
muscle memory”. As we can see here the possibilities of Director and AuthorWare do not have to be
restricted in simply playing multimedia files. The usability of a web page can also benefit from the
Shockwave plug—in, though a quick data transmission rate will be required.

3.3.2.2 Example: Asymetrix ToolBook Il and Neuron

Working with Asymetrix ToolBook II is very similar to Macromedia Director: instead of movies the
metaphor “book” is used. A ToolBook application is called “book” and consists of “pages”, which are
displayed in one or more windows, also known as “viewers”. Like Director, ToolBook offers with Open-
Script a professional programming language with commands to execute various instructions from creat-
ing new objects to establishing links to integrated Windows functions. Despite its powerful functionality
OpenScript is easy to handle because of its user—riendly English-like syntax and extensive list of com-
mands (see [HANDKE, 1997], p22). According to [ASYMETRIX, 1997] the ToolBook II authoring products
include:

e Assistant
With Assistant educational courseware can be created without the need of a programming language.

e Instructor
Besides a drag—and—drop interface more experienced system developers can also use the scripting
language OpenScript for writing courses. These can be stored as HTML documents with embedded
Java applets, so students may access the system from any computer on the world—wide web.

e Librarian

“[...] an Internet—based course management system that enables students to easily access course-
ware and administrators to track and record student progress. [...] Built on the popular Java
network programming language, ToolBook IT Librarian allows course instructors and administra-
tors to monitor student activity anywhere in the world. [...] it is now possible to certify that a
student has received a course; observe a student’s progress; and record test results and other valu-
able feedback. In this way, instructors are able [to] verify each student’s level of understanding
enabling certification programs and accredited degrees.”

e Neuron
With the help of the plug—in Neuron students can access ToolBook applications on the world—wide
web.

The most important feature of ToolBook II is that all its authoring products include Java applets that
represent interactive questions, scoring, and feedback. Consequently, if a ToolBook application is pub-
lished on the world—wide web, the Java applets will replace the proprietary ToolBook controls. These
applets communicate with Librarian to capture test results and other student feedback. Therefore, a
separate plug—in like Neuron is no longer necessary at the student’s side. An example at the Asymetrix
world—wide web site shows how a ToolBook application looks like after it has been converted into HTML
and Java applets. Unfortunately its interactive and educational abilities are rather limited. However this
does not have to be not be so, as another application — solely designed for Neuron — demonstrates: a

23 See http://www.sfx.co.nz/tamahori/thought/shockers.html.

38 Authoring System and Courseware Plug—In [Section 3.3]

course for dentists teaches how dental x—rays are classified, or wounds are stitched. In the latter exercise,
the student draws stitches on the open wound, and the accuracy of his solution is rated by the system.
This example especially shows that ToolBook II suits better for writing educational training software
than its competitor Director. [HANDKE, 1997] thinks that this distinction comes from the underlying
concepts, because Multimedia ToolBook is organised like a book, while the Macromedia Director uses the
“movie” metaphor, where various scenes must be synchronized, instead (p9). However, this could change
with the AuthorWare toolset. If T compare the availability of the two authoring systems Director and
ToolBook II, then the first one offers a broader user group: its Shockwave plug—in as well as the main
program are available for Microsoft Windows and Apple platforms, whereas Neuron and ToolBook just
support Windows systems. On the other hand, ToolBook has a major advantage in publishing applica-
tions on the internet with its included Java classes and applets, and so the missing plug—ins for other
systems can be replaced by Java code. According to [EBERL & JACOBSEN, 1997] Macromedia has made
a license agreement with Sun concerning the use of Java applets with Shockwave, but this is planned for
future software releases (pp479/480). At the moment AuthorWare can just access JavaScript functions
within an HTML page, so a connection to Java applets is already possible with Netscape’s LiveConnect,
but controls of an AuthorWare (as well as Shockwave) application cannot be solely replaced by applets.
Unfortunately the competition between the two major companies, Macromedia and Asymetrix, has led
to more software releases in a shorter period of time than ever before, so it is more difficult for developers
now to adapt to all the modifications quickly and successfully ([HANDKE, 1997], p455).

3.3.3 Discussion

(® Standard
The use of plug—ins is standarized in two ways: firstly, the programming interface functions are
supported by all plug—in enabled world—wide web browsers, and secondly, running an installed
plug—in is solely controlled by the browser, so for the user a plug—in becomes an invisible part of
the standard user interface of the browser.

(®» Programming experience
In contrast to CGI and Java development, writing a courseware application is often supported by
professional development tools like Macromedia’s Director and Asymetrix ToolBook, which espe-
cially focus on an easy—to—use development environment for content providers who do not have
programming experience. It should be noted that creating the plug—in program which is included
into the user interface of the web browser requires advanced programming skills.

® World—wide web access

For example, Macromedia’s Authorware supports reading data files directly from the internet and
displaying new HTML documents in the browser window. Consequently, the shockwave plug—in
offers the same services, so a new form of user interface, like the “circular pop—up menu”, could
be implemented for a browser. Unlike stand—alone programs written in Java, the browser interface
cannot be fully replaced, so I recommend extending the possibilities of the interface only if necessary.
Most world—wide web users are already familiar with the browser interface, so changing this standard
could hinder the learning process of students.

@® Local
As a plug-in must be installed on the user’s computer (and not on a world-wide web server) it
is inenvitably exectued locally. The same is valid for plug—in applications which do not have to
download files from the internet, but contain all the relevant data. Consequently, the work—load of
a world—wide web server is reduced compared with CGI programs.

® Extension
Plug—ins extend the possibilites of world—wide web browsers to display new file formats or run
applications written with external programs.

@ Interactivity
As the examples in the previous sections show, plug—ins offer real interaction between the student
and the tutorial system.

[Chapter 3] Techniques 39

(® Availability
Plug—ins are native code extensions, so they are specifically written for certain operating systems
and computer architectures. In addition, a plug-in enabled world-wide web browser is necessary.
For example, Macromedia’s Shockwave plug—in only runs on Windows 95 and Apple PowerPC.

(® Portability
The native code implementation of plug—ins prevents them being portable between different com-
puter systems. However, a plug—in application, like a Shockwave movie, is portable between instal-
lations of the same plug—in.

(© Download size
If complex applications and user interfaces are realised with the help of a plug—in application, the
size of the file which must be downloaded quickly increases. As the usability of a tutorial system
also depends on the time the students have to wait for a reaction from the system, the sizes of
plug—in applications should be limited depending on the speed of the internet connection.

(O Security

Macromedia’s Authorware offers two security levels for its applications: “trusting” and “non—
trusting”. For example, in the “non—trusting” mode of the Shockwave plug—in writing to the user’s
hard disk and downloading external commands or libraries is prohibited®*. Whenever the user
accesses an application which requires the services of the “trusted” mode, a dialog box asks for
confirmation to execute the program. However, this decision is solely left to the user as there is no
authority which can objectively tell whether an application can be trusted or not. The problem is
that tutorial systems which often store a permanent student model require an “agreement of trust”
by the student.

3.4 Common Gateway Interface

“The combination of adaptivity and hypermedia on the World Wide Web is in technical terms a tricky
one. [...] Few possibilities exist in present tools [...] providing the flexibility that is needed when tailoring
information to individual users ([ESPINOZA, 1996])”. One of these is the Common Gateway Interface®®,
which was introduced with the first HT'TP servers to provide access to external programs from the world—
wide web. Since then it has expanded into a powerful method to perform user requests, and only with the
programming language Java an equivalent alternative has been established. Using the Common Gateway
Interface is amazingly simple as long as a tutorial system developer has some experience in programming,.

3.4.1 Common Gateway Interface Basics

Common Gateway Interface programs can be written by a system developer in any programming or
scripting language, as long as the result is executable and running independently under a world—wide
web server. Therefore, we call CGI programs “external applications” as they are not part of an HTTP
server itself. Consequently, they do not depend on a special server, thus making them interchangable
between different HTTP server implementations. With the help of CGI applications it is also possible to
access programs that do not have their own world—wide web interface. In this case the CGI application
must work as a gateway between the two different environments: user input and program output are
processed to modify the data according to the required formats. For example, HTML code can be
added to the program output, so the result is then rendered by a world—wide web browser. Common
Gateway Interface programs are often needed when the contents of an HTML form must be processed,
because a CGI program can be executed in real-time and output dynamic information?%. Basically, the
communication between the user and the form processing application works like this: the world—wide
web user fills in the form with individual data and submits it to a server. The server receives the data

24 An exception: in “non—trusting” mode external world-wide web documents which are not on the user’s hard disk can be
read. Writing is still strictly forbidden.

25 Abbreviated as CGI

26 T.e. according to the user’s input data is generated on-the-fly. As with normal HTML files the contents of an output
cannot be changed after these have been displayed in the web browser window.

40 Common Gateway Interface [Section 3.4]

and knows by the information stored in the URL what external program must be started or queried,
if the CGI application is running continously. The output of the program is collected by the server
then and sent back to the user’s world—wide web client. If no errors have occurred the user will see the
response to his request in the browser window.

After these introductory words I will have a deeper look at the technology behind the Common Gateway
Interface. CGI data is accepted by the world—wide web server with the help of two methods, GET and
POST, which are chosen by the system developer depending on the purposes of each HTML form. The
difference between the two methods is small, but important: the method GET is intended for transmitting
small amounts of data to the server, as the data is appended to the URL that symbolises an external
program call. This technique has one major benefit though. Due to the appended data each external
program call is distinct, so the user is able to set a bookmark or a link to the requested resource without
ever having to re—enter the data again. Therefore, this method is commonly applied in internet search
engines in order to return a link to the user, which then can be processed by the search program each time
the user selects that link, as all the required parameters are already set. The method POST does not offer
this functionality as data is separated from the URL, however this makes transmissions of unrestricted
length possible. The data is sent to the standard input stream of the external program, and parsed there.
In the latter case especially, environment variables, which are additionally set by the world—wide web
server for the current data stream, are needed to send parameters to the program. Amongst the most
important are ((DECEMBER COMMUNCIATONS, 1997]):

e CONTENT_LENGTH
Primarily used by the method POST, it denotes the length of the content as given by the client.

e CONTENT_TYPE
Primarily used by the method POST, it represents the content type of the data for queries that have
attached information. For example, the type application/x-www-form-urlencoded for form data.

e QUERY_STRING
Used by the method GET, it contains the information following the first 7 in the URL which references
the external program. The symbol ? separates the URL from the data, and the query string is
encoded in the standard URL format by changing spaces to + and encoding special characters with
%xx hexadecimal values. Therefore, the string must be decoded before it can be processed.

e REMOTE_ADDR
The IP?7 address of the remote host making the request.

e REQUEST_METHOD
It stores the method by which the request was made, e.g. GET or POST.

The system developer should check these variables before analysing the data with the CGI program.
Further precautions are especially necessary if the source code of the program contains disk operations
or handles sensitive data. Normally, a CGI application is executed under the user identity of its owner,
so all the owner’s rights are also available for the CGI program. The developer must therefore prevent
any misuses, which could alter the proper operations of a program. While the program is running, data
can be sent to the standard output stream continously. This output can either be an HTML or text
document generated by the program, or instructions to the server for retrieving a desired output. It is
important that at least some output must be given as otherwise an error message will be displayed on
the user’s screen. The output begins with a small header which contains the so called server directives.
Headers which are not server directives are directly sent back to the client. The most common directive
is Content-type, which denotes what MIME type the returned document has. For example, in case
of HTML, the developer must put Content-type: text/html in the header. The final header is then
separated from the remaining data by a blank line.

The following examples will show how Common Gateway Interface programs are already used in distant
education and educational training. They are a powerful and easy—to—use method for software developers,

27 Internet Protocol, a connection-less protocol for data transmission.

[Chapter 3] Techniques 41

in order to combine new or already existing tutorial system with the world—wide web. At the moment CGI
applications are the only world—wide web extensions, which can be accessed by any browser available,
as long as plain standardised HTML code is returned. The potential user group is unrestricted, and
a system developer will largely profit from the fact that just one version of the tutorial system must
be implemented (new technologies are often limited to the browsers by Microsoft or Netscape, so other
browsers would require special solutions or alternate versions). However, there are some disadvantages:

e Programming knowledge required
As previously mentioned, the Common Gateway Interface applications must be written in a pro-
gramming language like C/C++ or Perl. However, many potential tutorial system developers may
not have programming experience at all, so in this case courseware authoring systems are recom-
mended.

e High work—-load on servers

Whenever the client sends a request to the world—wide web server, an instance of the CGI program
is started to compute the response. If many users are accessing the system at the same time, then
each new instance will increase the work—load of the server, and so increase the response time as
well. For a training course, whose access rate statistics contain certain peak points repeatedly, the
resulting delays may influence the usability and user acceptance of the whole system. However,
the work—load can be reduced by preventing incorrect user input for example. With the use of
JavaScript the contents of form entry fields can be checked, before data is sent to the CGI program.
If JavaScript is not available then the necessary data checks must be done by the CGI program
itself, hereby consuming important system resources.

e Limited interaction

Interaction with Common Gateway Interface programs is limited to request—response communica-
tions, so the prospects of a tutorial system will also depend on the response time of the network.
In addition, it is not possible to implement applications which require direct user manipulation like
the dinosaur construction kit mentioned on page 37. As long as interaction can be limited to data
that is selected with the help of checkboxes or radio buttons, or entered by the student as text,
Common Gateway Interface applications can be used. If a tutorial system requires mouse events or
constant student monitoring, then Java, JavaScript (partially) or plug—ins are recommended. The
CGI program must output the code for embedding Java applets, JavaScript functions or plug—in
objects, but it will no longer be compatible to browsers which do not implement these methods.

The Common Gateway Interface method alone does not provide all the abilities required by successful
tutorial systems. However, it forms a reliable basis for an adaptive and intelligent tutorial system,
onto which an interactive user interface can be built with the help of Java or partially JavaScript. The
CGI program is responsible then for managing domain and expert knowledge, initiating the tutoring
component, and storing user models, whose information is collected by queries to the CGI program
as well as by reports coming from Java applets and JavaScript functions. In addition, already existing
tutorial systems can be transformed into CGI applications, primarily by changing the way in which the
user input and system output are handled. For example, if an intelligent tutoring system was structured
with the architecture suggested in Section 2.3, then only the communication module would require new
programming, in order to use world-wide web displaying and interaction techniques.

3.4.2 Common Gateway Interface in Education

The uses of Common Gateway Interface programs are manifold, and the following examples are just
representatives for all the applications that exist in educational training.

3.4.2.1 Example: Virtual Seminar Koalah

The seminar Koalah?® last held at the Ludwig-Maximilians—Universitéit Miinchen in the winter semester
1996/97% is completely computer—based and managed over the world—wide web, so students from

28 Kooperatives Arbeiten und Lernen an der Hochschule.

42 Common Gateway Interface [Section 3.4]

different universities can participate. At the beginning of the seminar the members are assigned to a
group, in which they work on a common task or topic, without having to meet personally. In fact, each
group gets its own discussion board, where the members of that group can join to make proposals,
publish results or contact the lecturer and other seminar members. Whenever a student wants to
make a contribution to the board, he must do that with the help of a special email link. In that link
the suggested subject line of the email is given, so the posted messages are structured by default: for
example, by the subject line alone the type of a message, e.g. question or answer, can be identified
by the server and handled accordingly. The messages mailed to the world—wide web server are in fact
not parsed by a Common Gateway Interface program, but a similar technique is used. Various other
examples of virtual seminars, in which discussion boards are implemented by CGI applications, exist but
the herein introduced seminar Koalah has already been the focus of a research project, whose experiences
were summed up in a paper by [NISTOR & MANDL, 1995]. The results will be presented hereinafter.
The seminar itself is structured into different project steps, like introduction, project analysis, and final
discussion. Each exercise uses various mile-stones to synchronise the group members with the overall
schedule. Discussions are commented and rated by the lecturer, who alone decides when a mile—stone
was reached. In addition, a chat room®® was implemented to provide a way for informal meetings.

What were the experiences of the virtual seminar? [NISTOR & MANDL, 1995] say that on the technical
side the world—wide web, in which most of the information was retrieved, was so slow that an important
part of the seminar, which was searching for data, was difficult to handle. After the students had
familiarised themselves with the navigation in the world-wide web, selecting the right information was
also a problem. Therefore, the lecturer was mainly occupied with organising the seminar rather than
focusing on topical aspects of the discussions. The text—based exchange of information was actually
hindering the communication rather than promoting it. The seminar members were mainly concerned
with the form and contents of their messages, and the students felt that information was primarily
reflected rather than exchanged. During the seminar students continually expressed their demand for
more social interaction, as they had no contact with the other seminar members. Exercises were not
seen as a common goal but as an individual task, and students did not feel the need to solve them in
time. In addition, the communication within a seminar group was mainly centered around the lecturer.
[NISTOR & MANDL, 1995] came to the conclusion that more social interaction and an early introduction
to cooperation were important to improve the communication amongst seminar members. With the
online chat room and the mile—stones they have already done that, though in my opinion a better
structured discussion board should also be adopted. By the use of CGI programs the student could select
in which order he would like to have the subject lines of messages displayed, or whether the discussion
board is structured hierarchically®' or not.

3.4.2.2 Example: BTEX—Tutorial

The BTEX-tutorial®? is a representative of all the Common Gateway Interface scripts or applications
that work as an interpreter between an external program and the world—wide web. Other examples are
the CGI programs used by internet search engines that transform a user’s query into an appropriate
database query and send back HTML code for displaying the results. The IATEX—tutorial is primarily
intended for beginners, who want to make their first steps in this document preparation system which
uses complex commands to describe text layouts. The student learns with the help of trial-and—error
and immediate feedback, how command modifications influence documents. First the new commands are
presented to the student in an introductory text, where examples for closer inspection can be selected.
Whenever this happens, a world—wide web form is loaded into the browser which contains the INTEX code
of the selected example in a text entry box. The code itself can be edited by the student, so he is able to
change the parameters, or add and remove commands. If the button for submitting the form is clicked,
the IMTEX code is sent to a CGI program that transmits the data to the KTEX compiler. It collects
the textual output of the compiler, and, if the compilation was successful, it initiates the conversion of

29 See http://infix.emp.paed.uni-muenchen.de/nic/ws9697 /tnseite9697.html.

30 A chat room is a virtual meeting point where people can talk online in a primarily text based environment.
31 T.e. replies immediately follow after the originating message.

32 See http://www.uni—giessen.de/hrz/tex/cookbook/zero.html.

[Chapter 3] Techniques 43

the result — normally a .dvi file — into a graphics format that can be displayed by the world—wide
web browser. Afterwards an appropriate HTML frame is generated to present both files to the student.
There he can see what influences his modifications had. In spite of the simple solution the INTEX—tutorial
is a remarkable example on how CGI programs can be used in education. The system is individually
tested and examined by the student as it allows modifications of the sample code and feedback by the
IATEX compiler. However, one improvement could be made: in case of an error the textual output of the
compiler should be analysed by the CGI program to support the student with a better explanation than
the standard error message does.

3.4.2.3 Example: Plan and User Sensitive Help

e ol e
Liser
Kriwaled e Modeling
e Conponer Netacape
wiewer
I Pa

s esr Bl mur:w'*
Infarnad task

Figure 3.1: Architecture of the Plan and User Sensitive Help system. The browser, called “Netscape
viewer”, sends requests to the page generator which retrieves data from the knowledge base and adapts
the presentation of an hypertext page according to the information received from the user modelling
component. Graphics, which show the user’s current position in the information space, are directly sent
to a Java applet in the browser window.

The PUSH?? project is a test system, which provides an adaptive user interface for searching and
retrieving manuals on the software development method SDP?34, Its main goal is to reduce the risk of
an information overflow, that may happen due to the enormous amount of documents which are stored
in the underlying database. According to [HOOK, 1996] information is presented in a structure that
is closely based on the domain itself. Follow—up questions and hotwords establish links to alternate
documents that are specifically oriented to the current user’s task. Therefore, PUSH tries to determine
what intentions a user has, and individually decides, what information is presented. I will split the
introduction to PUSH, which was developed at SICS®?, into two parts: one, that discusses the use of
Common Gateway Interface programs here, and another one in Section 3.6.2.1, that will focus on the
PUSH Java applet. In figure 3.1 the overall architecture is shown. POP3% is an adaptive hypermedia
system with a world—wide web based interface to the information in the SDP manuals, and according
to [ESPINOZA, 1996] it has been implemented with the SICStus Prolog programming environment.
The Prolog database is queried by a page generator, that retrieves the information which the user
currently needs. In the result HTML code is included, and so a document whose contents are adaptively
selected by the generator is presented to the reader. The data is structured with the help of HTML,

33 Plan and User Sensitive Help.

34 System Development Process.

35 SICS is a non—profit research foundation funded by the Swedish National Board for Technical and Industrial Development
(NUTEK) and by a group of companies (CelsiusTech AB, FMV, Ellemtel Utvecklings AB, IBM Svenska AB, Sun Labs,
Ericsson and Telia AB).

36 PUSH Operational Prototype.

44 Common Gateway Interface [Section 3.4]

and various link and control elements are added to enhance the text with clickable buttons, menus and
follow—up references (see [ESPINOZA, 1996]). The page generator is a CGI program, which dynamically
creates world—wide web pages. The advantage of this method is that individually generated pages are
returned to the user without having to keep a static database of all possible queries and their resulting
HTML files on disk. In addition, the document data, which is stored in the database, and the code
for the interactive user interface are separate from each other (see [EspINOzZA & HOOK, 1996]), so
new SDP documents can be added or changed without the need to modify the page generator itself.
Another design constraint was that information, which was returned, had to be restricted, because
world—wide web users tend to read the part of a document, which is shown in the browser window
at once, i.e. without the use of scroll bars (see [ESPINOZA, 1996]). Therefore, unnecessary data is not
immediately displayed to the user, but marked as “collapsed stretch—texts” in the HTML page. The
user can click on these markers, and the hidden information is expanded. Due to the design of the
generated pages a new query to the slow Prolog database is not required anymore: in the first query
all the available information is included, but commented out by the page generator. In any consecutive
queries the comments are removed, and the reformatted page is directly sent back to the user’s
web browser. More details on how the page generator and the Prolog process interact with the use of
sockets, and the web browser and the generator with CGI, can be found in the thesis by [ESPINOzA, 1996].

A similar method, i.e. using Common Gateway Interface programs to scan for markers in files, is often
applied when implementing proprietary extensions to current world—wide web standards. The article by
[LAT ET AL., 1995], which was introduced in Section 3.1.4, describes a prototypal implementation of a
web browser, which processes the proposed HTML tags with the help of CGI programs. Whenever a
student accesses an HTML page of the tutorial system, the contents of that HTML file are scanned for
the new tags. According to the specification either a hierarchical overview structure is generated (for the
commands PARENT and CHILD), or a list of preliminary pages which have to be read before access to the
currently selected HTML file is granted (for PREREAD) is displayed.

3.4.3 Discussion

® Availability
Of all the techniques introduced in this chapter CGI programs have the best availability: as long as
they only return HTML code to the student, any world—wide web browser can render the results. In
contrast to that, plug—ins, JavaScript and Java just work with Netscape’s Navigator and Microsoft’s
Internet Explorer.

® Portability
As the output of CGI programs can be displayed by any world—wide web browser, the students
can access CGI applications from any computer platform for which a browser exists. The CGI
application, however, is generally not portable because it is an external program which is compiled
and runs on a specific platform. Consequently, the portability depends on the source language, in
which a CGI application was written.

(® Standard
The CGI interface is fully standardised within HTTP, because the output of a CGI program must
consist of an HTTP header and the document text.

@ Integration
As CGI programs normally return HTML documents, plug-ins, JavaScript code, Java applets etc.
can be embedded into the document source. In addition, the CGI interface allows integration of
existing applications into the world—wide web: the system developer must then provide an interme-
diate interpreter which modifies the data streams from and to the external application accordingly.

® Extension
CGI mainly extends the possibilities of the world—wide web by making external programs available.
This is particularly important for tutorial systems: an intelligent tutoring system can be realised
in which the communication between system and student is established by a CGI program while

[Chapter 3] Techniques 45

the remaining parts of the system, i.e. student, expert and tutor model, remain unchanged. For
hypertext systems better link management can be introduced by using a link database which is
queried by the GET method. These examples just represent a minor aspect of the possibilities CGI
offers.

® Student modelling
CGI applications reside on a world—wide web server, and in general the possibilities of reading,
writing and executing files are not restricted (depending on the operating system and the system
developer’s access rights). Consequently, modelling the student’s knowledge is not limited by restric-
tions which are imposed by other techniques. In addition, a student’s model, either for the current
session or for an inter—session profile, can easily be stored: for example in an external database that
is queried by the CGI program.

® Separation of concerns

It is possible with CGI programs to separate the document and exercise texts from the program
logic of a tutorial system. Thus, changes to texts can be quickly made without the need to modify
the source code of the system itself. I implemented a similar concept for the Tootsie Development
System (see Section 4.2), which is easily localized for different computer environments by changing
the resource variables, and not the source code of the CGI programs. CL-HTTP, plug—ins, and
Java offer the same possibility, whereas JavaScript requires that the source code of functions is
incorporated in a world-wide web document®7.

(® Local
CGI applications do not offer the possibility of running locally on a student’s computer, so an
internet connection is necessary when accessing a tutorial system. This problem can be solved
by installing a local world—wide web server on each user’s computer, but this is not feasable.
Consequently, with the need to communicate with many different users the work—load of the server
will increase (as mentioned on page 41).

(® Interactivity
The CGI interface uses a request-response communication, which does not make real interaction
between student and system possible. Students must select a submit button before data is sent to
the CGI program (see also page 41). With a slow internet connection this will effect the usability
of a system as the response time will be too long. A suitable solution is to implement plug—ins,
JavaScript code, or Java applets.

(® Programming experience
Writing CGI applications normally requires advanced programming experiencies.

(O Exercise—specific reactions

As described in “separation of concerns” the exercise texts and the source code of a tutorial system
can be stored in different files. However, if system reactions to users’ activities must specifically
be defined and if the source code is not available (as in many commercial products), the tutorial
system developer will depend solely on the implementation of the CGI program, whose programmer
hopefully foresaw all the situations which could happen. This problem can be solved if a “script-
ing language”, like Macromedia’s Lingo, is included, but it should offer advanced programming
constructs which can describe the interaction between system and student. In implementational
techniques, which include system reactions in exercise files (like JavaScript), modifications can in-
stead be made by adding the required functionality to the individual files. The advantage is that
the same programming language in which the system is written is used, but program logic and
document, contents are then not separate.

3.5 JavaScript and Cookies

Basically standard HTML documents, i.e. documents that can be rendered by most world—wide web
browsers, have static contents, that means that for all users exactly the same information is displayed.

37 The current JavaScript 1.1 however allows to specify an external source code file which is loaded separately.

46 JavaScript and Cookies [Section 3.5]

However, many world—wide web services, as well as many web publishers, require the possibility of
creating the contents of web pages dynamically: document texts can depend on the date or time of the
user’s access, frequent visitors want to specify certain topics in which they are mainly interested, or
more than just one document window must be controlled simultaneously. The already existing standard
for dynamic contents, the Common Gateway Interface, does often not fulfil these needs or expectations:
firstly, their execution requires valuable server time, and secondly, their flexibility is limited: contents
that must continously be updated on a web page can hardly be implemented. With the dawn of Java and
JavaScript, which have both been included in the most popular world—wide web browsers by Microsoft
and Netscape, these limitations are no longer valid. In this chapter, I discuss the use of the scripting
language JavaScript, whereas the more powerful, but also more complex, programming language Java
is explained in detail in Section 3.6.1. In addition, I also mention a new method of storing information
persistently on a client’s hard disk, the so called “Cookies”. The handling of Cookies has largely benefited
by its implementation into JavaScript. In Section 3.5.3 on “LiveConnect” a way of communication
between JavaScript, Java and plug—ins is introduced, before I conclude with a few examples that use the
new means for dynamic web contents.

3.5.1 JavaScript Basics

JavaScript was first introduced for world—wide web browsers by Netscape Communications in the years
1995/96. By now the newest release has already reached version number 1.1, and, in addition, Netscape’s
strongest competitor Microsoft — together they control approximately 80% of the world—wide web
browser market — has implemented the similar, but not entirely equivalent, JScript. The potential user
group of JavaScript is therefore large enough to be considered as a technology for implementing tutorial
systems. JavaScript itself is called a scripting language, and, despite its name, not comparable to Java at
all. In general, scripting languages are part of various applications and provide a simple way to control
the application with the help of a small program, for example a macro, for tasks that frequently occur.
Their main idea is to address more users than the normal programming languages do, by reducing
complexity or by making them more alike to a natural language:

The JavaScript language resembles Java, but without Java's static typing and strong type checking.
JavaScript supports most of Java’s expression syntax and basic control flow constructs. In contrast
to Java’s compile-time system of classes built by declarations, JavaScript supports a run—time
system based on a small number of data types representing numeric, Boolean, and string values.
JavaScript has a simple instance-based object model that still provides significant capabilities
[NETSCAPE DEVELOPER, 1997A].

JavaScript code is part of the HTML page that uses it, and so it is also called “inline code”. However,
it can also be stored in a separate file and included by any HTML document, a method which makes
handling and maintenance of the source easier. At the time of writing this operation is only available from
JavaScript 1.1 on, and is not supported by Microsoft’s JScript or older world—wide web browsers. Despite
the common impression of scripting languages, i.e. low complexity in favour for ease—of—use, JavaScript
supports all basic programming constructs like recursion. Beginners with no programming experience
must definitely invest some time before they can start writing code, but the same is also necessary
for programming languages that are part of courseware systems, like Macromedia’s Lingo. There, the
integrated and GUI control-oriented development environment will leverage the coding, but such a tool
is also planned for JavaScript. What makes JavaScript easy to use is not only the close resemblance to
Java, and the programming languages C and C++, but also:

e Variable declaration
In JavaScript variables are loosly—typed, i.e. the developer does not have to specify a certain variable
type, like char or int in the related programming language C: he just assigns a value to the
variable. During the execution of JavaScript programs it does not even matter whether the type
of the assigned value remains the same. When necessary, JavaScript will perform type conversions

[Chapter 3] Techniques 47

automatically. By default, variables are defined globally, and only for local declarations the keyword
var must be used. For beginners, these two features make JavaScript easier to handle, because to a
programmer the name or value of a variable is more relevant than its type or location. However, this
also means that larger JavaScript applications are more difficult to maintain: variable declarations
can appear anywhere in the source code, and variable assignments may even intersect. Therefore I
recommend that global variables are defined only when necessary, and variable names are chosen
that clearly express the intended use.

e Objects and classes

In JavaScript the commonly known structures, array and record, are in fact not part of the lan-
guage syntax, they are seen as user—defined class objects®®. Classes are simply declared by writing
a JavaScript function, which is named after the class and parameterizes the class properties. Con-
sequently, if the developer wants to create an instance of a class, he will have to use the keyword
new, followed by the function call, to reserve enough space for the class object. More complex
structures can also contain their own functions, which are known as methods, but unfortunately
more advanced techniques of object—oriented programming, e.g. inheritance, are not available in
JavaScript. The most frequently used standard classes are document, window and navigator. For
example, the first one contains all the properties of the current HTML page, but also gives access
to the links and form elements of that page. These can then be altered by JavaScript commands
and functions. New classes cannot be derived from standard classes, so the class hierarchy is known
as an instance hierarchie (see [NETSCAPE DEVELOPER, 19974]), because objects and not the class
itself are available to the developer.

JavaScript functions are normally located in the <HEAD> section of an HTML file, so they are loaded
before any data is displayed or user events occur (see [NETSCAPE DEVELOPER, 1997A]). Otherwise,
there are no restrictions in positioning JavaScript code in an HTML file, so whenever the web browser
is executing a method or function call, the results will be rendered within the normal document text
flow. This just works once while loading a page, but nevertheless, the system developer is able to define
dynamic, often user—specific, contents, that depend on external influences like Cookies or additional
information on the web client. In contrast to that, event handlers can be triggered by the user at any
time while interacting with the web browser. Still, once the document text has been fully displayed in a
browser window, it cannot be changed by a function call anymore. What event handlers can do though
is manipulate the contents of form controls, do computation, and display a dialog box or another HTML
page in the same or new browser window. If I examine the method, in which JavaScript functions are
executed by the world-wide web browser, I find a contradiction in the official documentation: in general,
JavaScript is interpreted by the client, but according to the description of the new object Function “[...]
declared functions are compiled”. Except for performance reasons the distinction between compiled
and interpreted code will not influence the development process of a tutorial system. The predefined
JavaScript methods mainly offer link management, string manipulation, mathematical functions and web
browser control. A good overview of all available methods, properties and event handlers — examples
for the last two will be dicussed later — can be found in [NETSCAPE DEVELOPER, 1997]. As a typical
example for the use of a JavaScript function in a tutorial system, SetTimeout offers the ability to run a
given code expression after a certain amount of time, so for instance, by calling SetTimeout recursively
the value of a form control or a variable can be continuously updated. In a tutorial system SetTimeout
may be used to display a help screen after an elapsed time period, or to collect user data by storing how
long a student has spent on a certain task.

Amongst the useful properties of class objects for educational programs are document.cookie and
document .referrer. The first one allows to easily set and retrieve Cookie values as described in Section
3.5.2. As in the tutorial system prototype Tootsie — see Section 4.2.4.1 — Cookies can be applied to
store student data, e.g. what exercises he has done and what difficulty level he has chosen, in order to
select further tasks and feedback individually. In document.referrer the URL is kept, from which the
current world—wide web page was accessed. This reference may be checked to see whether the student is

38 Netscape’s JavaScript documentation, see [NETSCAPE DEVELOPER, 19974], uses the term “object” differently than T do:
whereas I use the commonly known expressions from object—oriented programming, the documentation replaces “class”
with “object”, and “object” with “object instance”. Although strictly speaking JavaScript is not an object—oriented
language, the object—oriented terms seem more appropriate to me.

48 JavaScript and Cookies [Section 3.5]

coming from a preliminary page, and following the suggested course flow. However, the most important
advantage of JavaScript are the event handlers, which allow interactive HTML pages. Event handlers are
regular functions, that are called whenever a user event®® occurs. Most form controls?’, as well as the
web browser itself, support these, so the way in which the user is interacting with the current document,
can be followed and stored. Event handlers are mainly applied when simple computations or operations
must be done, or fill-in forms are checked for proper input before submitting them to the server in order
to reduce the server’s work load. However, their abilities can be ideally used in a tutorial system to
establish an student profile: e.g. in which order were the exercises done? How many times has the help
button been clicked? How often did the student’s mouse pointer leave the current browser window? As
the tutorial system prototype Tootsie shows, it is also possible to do all the student modelling with the
help of event handlers and JavaScript, though the resulting model is very limited. However, in this case
the main benefit is that the tutorial system can also run without a permanent internet connection, as
no external programs like Common Gateway Interface applications are required. An overview of existing
and proposed events is found in the new HTML 4.0 specification, which was introduced in Section 3.1.3.
HTML 4.0 acknowledges the use of scripting languages, and points out that “HTML’s support for scripts
is independent of the scripting language [RAGGETT ET AL., 1997]”, so alternatives to JavaScript may
be announced sooner or later.

The benefit of JavaScript is what [RAGGETT ET AL., 1997] calls “smart forms”. Before an HTML form
is submitted to a server its contents can be checked for erroneous input, thus informing the user immedi-
ately and reducing the server’s work—load. In addition, networked applications can be build with the help
of dynamic contents. However, JavaScript is not standarized yet, and so it is difficult to write universally
understood programs, because browsers may react differently to the same code (see [DECEMBER, 1997]).
Improvements have been made up to now, but still JavaScript is not fully compatible. While writing
Tootsie I noticed for example that certain commands do not work on all operating systems, even if the
world—wide web browser came from the same manufacturer. In particular Microsoft’s Internet Explorer
3.x had difficulties with JavaScript code: even on Microsoft’s internet sites runtime—errors occurred, and
in particular, the code for changing the contents of a frame, which was mentioned in the Frequently Asked
Questions list by Microsoft, did not work. However, as long as standard commands and event handlers
are used, the compatibility problems can be reduced, as many internet sites that run JavaScript programs
show. The developer must remember though that the potential user group of a tutorial system is limited
to the web browsers which understand JavaScript, and that tests on different platforms may be necessary.

3.5.2 Cookies

Cookies allow world—wide web servers to store small pieces of information on the client’s side, and their
contents can be retrieved any time in future connections. In fact, they are not restricted to the scripting
language JavaScript only; they are actually part of the HTTP header of any HTTP object, so for instance,
Common Gateway Interface programs are also able to work with Cookies. Nevertheless, I discuss the
Cookie sperzification in the context of JavaScript because of the easy—to—use mechanism that JavaScript
provides: a Cookie is a property of the class document, and it can be accessed like any string object. As
previously stated, Cookies are a persistent piece of information, which is set by the server and kept on
the client’s side. In general, their life—span lasts longer than the connection to the world—wide web server,
so whenever a user returns to the same web site again, the Cookies are still valid, and their contents can
be retrieved. They will only be deleted, when their expiration date is reached, or when the user himself
removes them from the hard disk. The spezification defines the following parameters for the Cookie HT'TP
header:

e <name>=<value>
After the Cookie has been set by the server, it can be accessed under the given name in order to
retrieve its value. A new value is stored whenever it is assigned to the Cookie again. The name and
value sequences themselves contain any character excluding semi—colon, comma and white—space.

39 A user event is e.g. a mouse click or a keyboard input.
40 Tn this context, the expression “intrinsic event” is common in various documentations like [RAGGETT ET AL., 1997].

[Chapter 3] Techniques 49

If the length of a Cookie exceeds the maximum 4 kB the additional characters will be removed
before the Cookie is set.

e expires=<date>
The expiration date specifies how long a Cookie is stored on the client’s side. If no expiration date
is given, the current Cookie will be deleted after the user session ends. The same will happen, if
the date is set to a value in the past. In any case, the path and the name must exactly match in
order to replace the old Cookie with a new Cookie. If the maximum number of stored Cookies*! is
reached, the least recently used Cookie will be deleted, although it has not expired yet.

e domain=<domain>
In order to prevent Cookies being accessed by unauthorized servers, each retrieval of a Cookie value
must be confirmed by a “tail-match”#? of the domain name. The default value of domain is the
host name of the server, which generates the Cookie.

e path=<path>
“The path attribute is used to specify the subset of URLs in a domain for which the Cookie is valid
(INETSCAPE DEVELOPER, 1997E])”. By default, the path of the current document will be assigned
to path.

® secure
The Cookie will only be transmitted if the communication between server and client is secure.

Currently most world—wide web users view Cookies, which are able to store any textual information on
the users’ hard disk, with suspicion. They fear not only possible security leaks through implementational
errors, but mainly the ability to create a profound user profile. Although in most browsers a dialog box is
optionally displayed, in which the user is asked to confirm a Cookie whenever it is transmitted, the user
must have the opportunity to see and control the contents of Cookies himself. In a tutorial system the
student will be able then to try various “what—if” situations by modifying the Cookie values. In Tootsie
Cookies are frequently used to learn more about the student, to give feedback, and to set user preferences.
The tool “Cookie cutter” helps the student to check the values stored in these Cookies, or to change their
contents. By making Cookies accessible to the students, I therefore hope that the user of a tutorial system
will accept and trust them. At the time of writing the prototype Tootsie is the only educational system
that uses JavaScript in conjunction with Cookies. The lack of experience and examples in regard to the
implemention of tutorial systems in JavaScript was the main reason for writing the Tootsie system. In
addition, the prospect that Cookies work without a permanent internet connection, for instance when
running on a student’s computer at home, was a compelling argument for the technique JavaScript in the
software design process*3. Other implementations of Cookies include shopping in the world—wide web,
or storing login and connection parameters. In the first example, the Cookie works like a shopping cart,
in which the user puts goods, before he pays at the check—out. The second use is applied by the PUSH
system (see Sections 3.4.2.3 and 3.6.2.1): it works with Cookies to make connection handling between
the client and the Prolog process on the server easier. The socket number, which each user gets when
accessing the Prolog database for the first time, is stored in a Cookie in order to be sent to database
when a new queries must be processed.

3.5.3 LiveConnect

The techniques that are suggested in this thesis can be combined to enhance the abilities of a world—wide
web based tutorial system. If a developer uses cascading style sheets for the layout, the scripting language
JavaScript for checking user input and setting preferences, and finally Java or plug—ins for simulations and
interactive graphs, he will also require a way to communicate with the different objects in a web page. In

41 This may differ from client to client, however the minimum numbers are: 300 Cookies in total, and 20 Cookies per server
or domain.

42 «Tajl matching means that [the] domain attribute is matched against the tail of the fully qualified domain name of the
host ([NETSCAPE DEVELOPER, 1997E])”.

43 As far as T know only Netscape’s Navigator supports this functionality. For Microsoft’s Internet Explorer the non—existing
internet connection could be replaced by the Personal Web Server.

50 JavaScript and Cookies [Section 3.5]

this case, he will need Netscape’s LiveConnect to “call Java methods from plug—ins, call native methods
implemented in plug—ins from Java, call Java methods from JavaScript, [and] call JavaScript from Java
methods ([NETSCAPE DEVELOPER, 1997D])”. The same functionality is also available for Microsoft’s
Internet Explorer, so the possibility of connecting HTML, plug—ins, JavaScript and Java is not limited
to one browser manufacturer only. According to the LiveConnect documentation JavaScript is now part
of the Java environment, so every public class of Java can be accessed by JavaScript. As Java applets
are embedded into a world—wide web document, they can be referenced with JavaScript by their given
applet name in the document object. If a method call to a public function of a Java class is added to
that applet reference, the method will be executed. Plug—ins and Java classes interact with the help of
the Java Runtime Interface JRI. Plug-ins can define public Java classes that are initiated at the same
time whenever a plug—in is executed. As mentioned before one benefit of JavaScript is that all public
Java classes, which are currently loaded, can be accessed by a script, so as a result JavaScript is able to
communicate with the classes of the plug-in as well. In addition, JRI allows Java classes to call native**
plug-in functions (see [NETSCAPE DEVELOPER, 1997D]).

3.5.4 Discussion

JavaScript only operates within an HTML document, so the implementation of exploratory learning
environments is possible. In addition, JavaScript also allows adaptivity, student monitoring and guided—
discovery learning on a basic level, as event handling, Cookies, and individual user support are part of
its functionalities.

® Availability
JavaScript can already be applied in current world—wide web browsers, i.e. Netscape’s Navigator
and Microsoft’s Internet Explorer. The latter however, does not implement all the classes and class
methods of JavaScript 1.1.

® Portability
JavaScript is platform—independent if a JavaScript capable browser exists for a particular computer
architecture or operating system. The only exception is the newline character in a textarea object:
for Unix and Apple Macintosh platforms \n is used, while Windows encodes newline as \r\n.
However, the author of a world—wide web document which incorporates JavaScript can query the
user’s platform with the userAgent property of the navigator class.

® Integration
As JavaScript must be part of an HTML document it can be used in conjunction with other
techniques: LiveConnect can establish a communication between Java applets and JavaScript,
while Macromedia’s Authorware can directly execute JavaScript functions with the procedure
GoToNetPage. According to [MALLERY, 1997] the CL-HTTP server also supports JavaScript.

® Extension
The scripting language JavaScript extends standard HTML by the ability to process user input and
data. Before information is sent to the world—wide web server, forms can be checked for erroneous
input and basic computations can be made. In contrast to CGI, the browser itself handles these
requests, thus reducing the work—load of the server. In addition, individual document texts can be
presented to the students and depending on the students’ access history the course flow can branch
with the help of JavaScript’s if-else command.

@ Interactivity
JavaScript does not offer the possibilities of Java or plug—ins, but its event handlers can provide
feedback in many situations: in JavaScript 1.1 for example, images can be changed even after the
world—wide web browser has rendered them by calling a function, which replaces the existing image
with the new one, for the event mouseOver*® of an image object. However, it is still not possible to
change the document text after it has been displayed. In addition, events can be used to monitor
the student’s activities.

44 A plug-in is a native—code extension of a world—wide web browser.
45 This event is triggered whenever the user’s mouse pointer is over an object which supports the event.

[Chapter 3] Techniques 51

@ Local
JavaScript code is executed on a local computer, thus not requiring an internet connection. With
Netscape’s Navigator it is also possible to set and read Cookie values without an HTTP server,
however Microsoft’s Internet Explorer 3.x does not support this functionality.

(® Standard
JavaScript was solely developed by Netscape and is currently not standarised by an independent
institution. Although Microsoft has included most of JavaScript’s features into its world—wide web
browser, the problem of proprietary commands is still not solved.

(® Modular
As JavaScript combines exercise texts and source code in one file a tutorial system can hardly be
modularised, for example in separate student, tutor, and expert models. Consequently, JavaScript
should only be used for a basic adaption or student monitoring procedure rather than for complex
student modelling as demanded by intelligent tutoring systems.

(® Implementation
In general, JavaScript is a well-defined scripting language which is already used by many world—
wide web sites. However, I had various problems while writing the tutorial system and development
toolset, Tootsie: for example, a system which was running with one version of the Netscape Navigator
did not operate with the next release. Erroneous implementations of the JavaScript interpreter
unfortunately hinder the development of JavaScript based world—wide web documents. Thorough
tests on various platforms are therefore inevitable.

(® Programming experience
Development, of JavaScript applications requires basic programming experience.

(© Document size
If JavaScript is used for complex data processing and computation, the size of a world—wide web
document will grow because the source code is included in a document. With slow internet com-
munication facilities this can affect the usability of a system, so the complexity of a tutorial system
is restricted. In JavaScript 1.1 a source file, which is stored and loaded separately, can be defined,
however this functionality requires a JavaScript 1.1-enabled browser.

(® Cookie acceptance
Many world—wide web users refuse to store Cookies on their hard disk or in the home directory.
However, tutorial systems often require personalised data which was collected from the student
during more than one session in order to follow the learner’s progress. The use of Cookies should
therefore be evident to the students.

(® Printing documents
Document text which is displayed on screen by using the write method cannot be printed. There-
fore, write should only be applied for contents which are individually chosen for a student.

3.6 Java

All the previously mentioned techniques had to rely on HTML and the accompaning web browser for
presentation and operation in the world—wide web. CL-HTTP, plug—ins and JavaScript, all use either
HTML and the world-wide web browser as their graphical interface or are embedded into an HTML
document. The programming language Java on the other hand is able to run independently of the web
browser and HTML, but still offers the ability to establish data connections to the internet. In the
following sections I will introduce the programming language Java, whose revolutionary concepts have
greatly influenced the development of the world—wide web over the last three years. As before, I will
mainly concentrate on the advantages and disadvantages in regard to tutorial systems, and I will also
discuss two examples, that already use Java in educational software.

52 Java [Section 3.6]

3.6.1 Java Basics

The programming language Java was invented by James Gosling at Sun in 1990, when he and his team
were looking for a language that was more appropriate for writing consumer electronics software than
the existing languages C and C++. At that time C++4 was not yet standardised, while C was missing
the modular and object—oriented program design of C++. In addition, it is still necessary to recompile
applications that are written in C or C++ when transfering them to another system platform. The
developers of Java hope now that all these disadvantages will be resolved, because Java is a small,
reliable, architecture—independent language, that is already prepared for internet programming, because
methods for accessing the world-wide web are included in the API*® package by default. Java programs
are available in two forms: either as a stand—alone application or as a Java applet. The latter only runs in
the context of a world—wide web browser, and therefore it is rendered as an inline object in the browser
window. Java applets extend the possibilities of web browsers as well as plug—ins do, but as a virtual Java
machine is part of modern web browsers, they do not have to be separately installed, and their usage is
hardly limited, especially not to a certain user group. According to [FLANAGAN, 1996] Java combines
the following characteristics:

e Simple

For most programmers learning Java is easy, because its syntax and code structure is closely related
to C and C++. In addition, some of the more difficult features of C and C++ have been removed,
like operator overloading, pointers, or the compiler and link control of the C preprocessor section.
However, an absolute beginner in programming, which many content providers of tutorial systems
certainly are, will still have his problems in mastering Java. Consequently, the lack of time for
learning Java will restrict its usage as a core technology of tutorial systems amongst unskilled
system developers. However, this should not be the sole reason to reject Java, as its inherent
internet functionality and its possibilities of direct user manipulation can hardly be replaced by
another technology.

¢ Object—oriented
In general, the object—oriented programming model, which is more or less used by HTML 4.0,
Common Lisp, and the courseware applications as well, promises modular and reusable code, which
was one of the premises of Java. In contrast to C++, Java has already incorporated the object—
oriented approach: most “commands” are actually methods of classes. At first, programmers who
are accustomed to C may have difficulties in adopting the new way of writing codes, but they will
soon realize that object—oriented programming is often closer to reality.

e Distributed
Java contains class methods for connecting to a socket (to establish a reliable stream network) or
accessing a internet resource by an URL. However, it does not offer services like CORBA*", as this
would go beyond the scope of Java. For a tutorial system the available methods certainly cover
all required communication needs, but it is advisable to consider implementing a link management
facility, which the world—wide web does not offer.

e Interpreted

The Java compiler generates platform-independent byte-code?®, which is then executed by a
platform—specific interpreter and run—time system on the client’s machine. As the advantages of
Common Lisp (page 28) have already shown, an interpreted language like Java enables rapid pro-
totyping and easy experimentation, because compiling the code and linking the libraries is not
necessary anymore. However, due to performance reasons many environments that run Java appli-
cations include a just—in-time compiler as well, which translates the byte code into native machine
code. For a tutorial system however, there should be no performance difference between interpreted
and compiled Java code.

¢ Robust
Due to automatic garbage collection, exception handling, and the lack of pointers, Java development

46 Application Programming Interface.
47 Common Object Request Broker Architecture.
48 Unfortunately [...] the byte—code is still partly erroneous (p76, [SACKL, 1997]).

[Chapter 3] Techniques 53

is more robust than C or C++, but still the programmer is responsible for writing software that
is easy to maintain and stable. A tutorial system especially requires a robust implementation, as
user acceptance largly depends on an error—free learning environment. The importance of a robust
implementation can be seen in software development where it is common to plan a third of the
project time for defining and designing the project, and another third for testing. The remaining
time is then used for coding and installing the system.

e Secure

Unfortunately the missing organisational structure of the internet makes abuses very simple: data
can be collected, modified, or replaced at any node of the network. As Java is executed on a
local machine, one of the key design issues was to make downloading and running Java applets as
secure as possible. A byte—code verification process is used to prevent illegal code, stack overflow
(or underflow), incorrect register operations, or illegal data type conversions. In addition, with a
separate name space for downloaded classes it is ensured that standard Java classes cannot be
overwritten or replaced. For security reasons and in contrast to stand—alone programs, Java applets
do not have the right to write on the user’s hard disk. Therefore, [SACKL, 1997] rejects applets in
his prototypal implementation of a communication tool for workgroups, and uses a Java program
instead. With the introduction of “trusted applets”*’ however, which have the same rights as
local Java programs, the known user interface of a world—wide web browser does not have to be
replaced by a proprietary interface which is required when using a Java program, and specific user
data can be stored and retrieved on the user’s computer, thus relieving the server from managing
various students’ report or log files. According to [SUN MICROSYSTEMS, 1997] the later releases of
the trusted applet spezification will provide more sophisticated security policies, including greater
granularity in the allowable trust levels.

e Architecture—neutral

By using Java software developers hope that one day it will be possible to write programs that can
be transfered between to different computer platforms without modifying the source or executable
file. According to [FLANAGAN, 1996] the internet will therefore become the computer itself as the
never—ending discussion on the network computer promises. Thanks to the byte—code format Java
programs can run on any computer platform as long as a Java interpreter and run—time system
exist. For software developers this is very important as it no longer limits their programs to just one
platform. Instead, their applications can now be distributed for a broader user group without any
modifications. Like CLIM Java uses an abstract windowing toolkit (AWT) to design graphical user
interfaces for platform—independent Java programs. This toolkit must have the ability to “adapt”
to the current user environment automatically. Unfortunately this technique coincides with the
restriction of forbidding platform—specific window operations: the smallest set of window functions,
that are common in all the different user interfaces, can be used. In Java itself, platform—independent
graphical user interface is supported by creating platform—dependent “peers” for each of the classes
and components of the abstract windowing toolkit ([FLANAGAN, 1996], p269). With “Swing” Sun
has recently introduced a new extension to the AWT which offers two alternatives: a Java program
either provides the same look—and—feel as any other application for a particular computer, or it
consists of special cross—platform components that are equally presented, no matter what operating
system they are running on (see [SUN MICROSYSTEMS, 19984)).

e Portable
In contrast to C and C++ the sizes of data types are exactly specified in Java, as well as the
operations that can be used for a single data type. This also limits the possibilities of errors, and
increases the chances of a architecture—neutral implementation.

e High-—performance
Although just—in—time compilers already exist, Java is mainly an interpreted language. Therefore,
it is 20 times slower than C/C++—compiled programs, but according to [FLANAGAN, 1996] faster
than scripting languages like Perl. For tutorial systems especially the performance of the underlying

49 With the help of encryption technology “|...] it is possible to load a trusted applet (one that can run without severe
security restrictions) over an untrusted network as long as you trust the source of the applet (p200, [FLANAGAN, 1996])”.
In general, applets “[...] loaded into a Java—enabled browser cannot read [write] files. Sun’s appletviewer allows applets
to read [write] files that are named on the access control list for reading [writing]. [...] However, an applet can maintain
its own persistent state on the server side ([SUN MICROSYSTEMS, 1998B]).

54 Java [Section 3.6]

programming language is not important, because these systems are waiting for a student’s reaction
most of the time, and thanks to Java’s multithreaded design, processor resources are not wasted,
when, for example, waiting for an internet connection. However, if many computations are necessary
and the application itself does not require world—wide web accessability, then depending on the speed
of Java just—in—time compilers, a different programming language will be more feasable.

e Multithreaded

Java supports the use of multiple threads®, which can be executed simultaneously, by offering
their own class definition. Synchronization primitives are also included to handle the accesses to
mutual system resources, which must be used exclusivly by the different threads. They are based on
the monitor variable concept, which was introduced by C.A.R. Hoare in order to replace Dijkstra’s
semaphores which cannot prevent certain situations leading to deadlock or starvation. Multithreaded
tutorial systems improve the performance by the aforementioned technique of doing further com-
putation while downloading, or even pre—loading, the following exercise page. Therefore, a tutorial
system developer should apply multiple threads to make the response time of the system as short
as possible. However, implementing this technique will require advanced programming skills.

e Dynamic
“[-..] Java loads in classes as they are needed, even from across a network. Classes in Java also have
a run—time representation. Unlike in C or C++, if your program is handed an object, it can find out
what class it belongs to by checking the run—time type information. The run—time class definitions
in Java make it possible to dynamically link classes into a running system ([FLANAGAN, 1996],

pg) -73

[SACKL, 1997] sees the disadvantages in Java not primarily in the programming language itself, but
first and foremost in the support for developers. Java is a fairly new language, which must still prove
whether it can fulfill the high expectations that are set into it. In the beginning professional development
toolsets were rare, and so other languages were prefered, but this has now changed. In addition, the new
Java Development Kit by Sun provides extended features, that have been incorporated in regard to the
experiences that were made by developing applets for the world-wide web. So, JDBC?! was introduced to
enable Java to execute SQL statements, and JDBC continues the tradition of the first Java specification to
be portable, that means that JDBC is not restricted to one database only. JDBC establishes a connection
with a database, sends SQL statements, and processes the results, thus offering the abilities of standard
databases to any Java application. For instance, tutorial systems could use a database to store user models
or exercises, to query the students’ progress or to keep the exercise texts independent and modifiable from
the system code. In comparison to other world—wide web techniques Java offers real interactivity for the
user. [ANDERSON ET AL., 1995] summarizes the requirements for the interaction with a interface:

e “Actions taken to the interface must be passed through the tutor. The tutor needs to know what
actions students have taken so it can follow students along the solution path they are pursuing and
provide appropriate guidance.”

e “The tutor must be informed about the consequences of any interface actions for the state of the
interface. Basically, the cognitive model needs to maintain in its working memory a representation
of the interface that the students see.”

e “The tutor must be able to perform interface actions itself.”

Like in plug—ins, user events will only be triggered if they happen in the content area of the applet, or
if they have been passed on by LiveConnect. However, the aforementioned requirements are still best
achieved with the help of Java: like plug—ins the contents of an embedded applet can be continously
changed as an applet is independent from its underlying browser, but although plug—ins offer the same
level of interaction, they do not have the possibility of keeping a connection to the server constantly
open. If the tutorial system is realized with the help of a database, this difference will be an especially

50 Threads are lightweight processes that do not require the organisational overhead of standard processes. Often threads
must share the same system resources, while processes can rely on their own memory space etc.
51 It is thought of standing for Java Database Connectivity.

[Chapter 3] Techniques 55

important argument for the use of Java. In all other techniques, i.e. HTML, CL-HTTP, CGI programs
and JavaScript, the content of a world—wide web page cannot be modified, once it has been rendered
by the web browser. The only exceptions are JavaScript event handlers, which can display dialog boxes
or change the values of form controls, and dynamic objects, which for example will be able to change
their position in a page. For further information and, for the newest Java spezification I recommend the
documents by [SUN MICROSYSTEMS, 1997] be frequently read.

3.6.2 Examples for Tutorial Systems in Java

For a tutorial system in the world—wide web the use of Java is recommended if complex programs must
be realized. The following examples will show what benefits Java has for educational software: previously
unthinkable types of tutorial systems, like simulations, can now be made available in the world—wide web.
In addition, Java applets can be combined with all other techniques to implement a more intuitive user
interface. At the time of writing I do not know of a tutorial system, which was solely programmed in Java
as a stand—alone application, but many examples of Java applets can be found. Although programmers
have focused on applets for special textual or graphical effects, the number of educational applets is
growing, and can be accessed from the Java applet repository at Gamelan®?.

3.6.2.1 Example: PUSH Graphical User Interface

PUSH, a document retrieval system for SDP manuals, has already been introduced in Section 3.4.2.3,
where I have focused on the CGI programs that are necessary to access the underlying Prolog database.
Retrieving SDP manuals is also possible by using an interactive graph, whose document nodes are
organised in a hierarchical tree structure which contains all the relevant dependencies. Direct user
manipulation, which enables the user to browse the information domain by clicking on the various
graph nodes, and creating graphs on—the—fly, whenever links are selected in the text document beneath,
cannot be implemented as a CGI program. Therefore, the programming language Java was chosen (see
[ESPINOZA, 1996]). Firstly the Java applet is intended to give the student orientational guidance in the
information space, and secondly it is an alternate way to access the manuals. The data, which the student
is interested in, can be changed either by selecting a link in the document text or by clicking on its
represented object in the drawing area of the applet. The focused object is then automatically centered
in the graph and neighbouring objects and relationships are added. For beginners, this option provides
an easy way to browse the information domain without losing orientation, a problem which frequently
arises in unstructured hypertext environments. The graph applet is displayed in a separate frame of the
browser window to make it independent from the remaining text, and to reduce download times as the
applet must just once be loaded into memory. The graph data itself is provided by the Prolog database,
whose query results are written to a file that is remotely read by the Java applet: “The reason that a
socket connection®® is not used is that at the time of implementation (fall 1995), the Netscape browser
was not equipped with this functionality ([EsPINOZA, 1996])”. The PUSH interface is interactive on
several levels, mainly because the user’s ability to understand new information depends not only on the
user’s previous knowledge, but also on the spatial representation and accessability of the domain. By
offering the possibilities to retrieve SDP manuals in different ways, i.e. menus and graphs, the various
user preferences can be satisfied (see [EsPINOzA & HOOK, 1996]). In an evaluation test two versions of
the PUSH system were examined by Kristina H66k: the adaptive one offered the same features as have
been mentioned here and in Section 3.4.2.3. The non—-adaptive interface was very similar to the other
system in the test, except that all the information entities of a new manual page were closed when it
was displayed for the first time. Ho0k found that the adaptive system was prefered by the students,
but she correctly remarks that such comparisons can be questioned as the underlying design of the test
systems is different, thus influencing the test results (see [ESPINOZA, 1996]). However, in that test the
authors believe that they found a way to prevent that obstacle as the non—adaptive version is also “a
good system in itself”. I do not agree with the last statement: as I said before the document text was
collapsed when it was presented to the student the first time in order to prevent an information overflow.
Consequently, the student had to extend each topic in which he was interested, so more user actions

52 http://www.gamelan.com/.
53 The Common Gateway Interface programs communicate by a socket with the database, see page 49.

56 Java [Section 3.6]

were necessary and information could be missed. This certainly modified the preconditions of the evalua-
tion and thus the outcome of the test as well, but the benefits of adaption remain undisputed nevertheless.

3.6.2.2 Example: Powersim Simulations

Powersim is a Norwegian software company that produces development toolkits for world—wide web
based simulation programs. The software package Powersim Metro JX Suite contains a tool for building
a simulation, called Powersim Constructor, and a simulation server Powersim Metro Server, which is
responsible for the communication and interaction with the clients. The clients themselves are world—
wide web browsers that must be able to interpret Java code, because the user interface of a simulation
is realized as a Java applet (alternatively, Microsoft’s proprietary ActiveX can be integrated). The main
intentions for writing the software were that the effects of future changes to a running system can be
visualized and tested beforehand. Various scenarios can be examined and new strategies tried before
an organisation is fundamentally restructured. A simulation is based on a network structure consisting
of elements and links, whose overall concept was adopted from the “system dynamics model” which
was developed at the M.I.T. Elements are described by mathematical equations, and according to these
their behaviour is simulated by the system. Constructor supports the developer in building a system: it
provides a drag—and—drop user interface, that can also integrate video and audio files into a simulation,
and contains standard elements, which are known from the “system dynamics model”. The Metro Server
is responsible for the communication and synchronization between the client’s user interface and the
server’s simulation engine. A persistent data stream is kept open during a user’s session, so it appears
to the user that the simulation is running locally, while the server is doing all the calculations. In this
respect Java is needed for establishing the connection as well as for the design of an interactive graphical
interface, because the results of the simulation, whose changes are transmitted from the server to the
client, must be displayed. The benefit of a server—based simulation is that the user’s interactions can
be continously monitored and analysed by the developer, as data must be written on the server’s hard
disk due to the aforementioned applet security scheme. The Metro Server supports up to 100 clients
simultaneously, allows different roles for the users, and can execute multiple models at the same time.
For presentations a simulation can also be started without an internet connection, but especially the
global accessibility distinguishes the Powersim products from stand—alone programs. In regard to tutorial
system development the simulation software is primarily intended for business adminstration courses, as
the examples at Powersim’s world—wide web site show. However, other simulations, whose domain can
be mathematically described, are possible.

3.6.3 Discussion

In general, all types of tutorial systems can be implemented in Java, as it offers all the possibilities
of a programming language. The focus is on simulations and interactive applications, which cannot be
supported otherwise: most of the previously mentioned techniques only provide static contents (HTML,
CL-HTTP, CGI, JavaScript) in conjunction with basic event handlers (JavaScript).

® Availability
Java just—in—time compilers are currently included in most world—wide web browsers, so the user
group which can access Java applets is large enough for an implementation of a tutorial system
solely in Java. In addition, Sun offers, with the program “appletviewer”, the possibility of running
Java applets outside a world—wide web browser.

® Portability
One of the primary goals of Java is to be portable to various computer platforms. At the moment
this ambitious plan has been fulfilled, however the latest arguments between Microsoft and Sun
about the Java standard increase worries that proprietary extensions will be made one day.

(® Standard
At the moment there is one authority which is in charge of the Java standard. System developers
can therefore rely on the publications and documentation by Sun.

[Chapter 3] Techniques 57

@ Interactivity
With its full control over the applet window in a world-wide web browser Java is able to offer
real interaction between the system and the user. Various user events can be triggered, so the
implementation of simulations and interactive graphs is possible. In addition, Java is a programming
language which supports the development of complex applications (in contrast to scripting languages
whose abilities are often restricted in favour of easier programming).

@ Local
Java applets which do not require a permanent internet connection can run locally on the user’s
computer, and so they do not increase the work—load of world—wide web servers (in contrast to CGI
programs). Stand—alone programs are by definition locally executed.

®» World—wide web access
Java includes classes and methods to establish an internet connection, so in contrast to the afore-
mentioned technologies it is possible to replace the user interface of world—wide web browsers with a
more suitable design for a particular course or tutorial system. As Java can communicate with exter-
nal programs, like databases etc., it also integrates their functionalities, and provides a world—wide
web interface for them.

(® Exercise—specific reactions
If the exercise texts and the source code of a tutorial system are separate from each other (or if
the source code is not available like in many commercial systems), it may be necessary to provide
a method in which reactions of the tutorial system on the student’s activities can individually
be specified for an exercise: either the source code of the tutorial system must be modified or a
“scripting language” included in which the reaction to various situations can be defined. In general,
this is not required if system code and document texts are combined in a single file, like in HTML
and JavaScript documents, as the functions, which represent system reactions, can be selected and
adapted to the current needs.

(O Programming experience
A system developer needs advanced programming experiences when using Java.

3.7 Conclusion

A good tutorial system which is implemented on the world—wide web combines the benefits and possi-
bilities which each technique offers. The following enumeration presents ideas for integrating the various
technical suggestions which I discussed in this thesis:

e A resource base of exercises and documents, in which the student can discover an extensive area
of the course domain (including links to external sources), is connected by the hypertext language
HTML, so the previously independent information forms a coherent and exploratory learning envi-
ronment.

e The use of an external link database, which is best realised with the help of a CGI application, or
Hyper—@G, is therefore recommended as link management becomes easier and more stable.

e The CL-HTTP server should in particular be considered by tutorial system developers if a knowl-
edge base written in Lisp exists.

e Real interaction between system and students is only possible with plug—ins and preferably Java
applets. Within their borders of the browser window they provide the necessary functions to react
individually on the users’ activities. If the students’ problem solving process is monitored inside
these embedded objects a global, i.e. not exercise—specific, student model can be created by storing
the retrieved data on the server’s hard disk. The same can be made for information which is, for
example, collected with JavaScript from outside the objects by using LiveConnect. It establishes a
communication link between JavaScript and the Java applet, so a JavaScript function can generate
a data string from the monitored values which are then transmitted to the applet by calling a Java
class method.

58 Conclusion [Section 3.7]

e In general, JavaScript is better suited for checking the contents of HTML forms and doing basic
computations before data is transmitted to a CGI application or the knowledge base of a CL-HTTP
server, but it can also be used to permanently store students’ preferences like the design layout of
the table of contents (see the explanation of the Cookie variable tootsie_cont on page 68).

e If a CGI application is responsible for storing a student model, data of the learner’s problem solving
can be collected by JavaScript event handlers. Whenever the student solves an exercise this data
can be added to the CGI request method.

e Like Java CGI programs are well suited to implement an intelligent tutoring system on the world—
wide web. Both can access expert, student, and tutor models which are separately stored from the
HTML documents that represent the user interface of an ITS.

These technical recommendations for a good tutorial system depend on the underlying type of system: a
simulation requires more interactivity and complex computations than a traditional CAI program, so it
is better written in the programming language Java. In general, the separation of the system architecture
into user interface, student model, expert model, and tutor model is suggested, however their weights
in the overall system structure are subject to the didactic principles: they specify how knowledge is
presented, how much feedback is given and how the different motivational dispositions of students are
supported. System developers should therefore early involve the intended user group in the design process,
in particular for the implementation of an adaption process and a cooperative work environment.

Chapter

Implementation

4.1 Tootsie

In the previous chapters I have discussed various techniques which can be currently used to implement
an interactive, adaptive, and even intelligent tutorial system in the world—wide web. I discussed their
advantages and disadvantages, and presented examples of tutorial systems already in use. Nevertheless, I
have not been able to follow the design process of such a tutorial system, partly because some techniques
have not yet been tried in real life or their code is copyright protected. I have therefore decided to work on
a prototypal implementation of an adaptive tutorial system. The following chapters will cover the design
process, give an overview of the system’s features, and finally discuss the system’s strength and limitations.

4.1.1 Tootsie Basics
4.1.1.1 Tootsie System Components

At the beginning of the design process the main goal was to develop a prototype of a tutorial system
to accompany a lecture on Probability Theory and Statistics for computer scientists at Technische
Universitdt Miinchen. I quickly found out that working on a tutorial system, especially its exercises,
is often a repetitious development process. This means that many development steps occur quite
frequently, whereas the core design of a tutorial system is often a unique implementation. Programming
exercises for the system and adding them to the existing environment can be tedious, error—prone and
time—consuming for a developer who has to do certain steps for each of the exercises again and again.
Therefore I decided to split up the tutorial system into a development toolset, which will help in creating
exercises, and a user interface, which the student will see (symbolised in figure 4.1). A side—effect of this
separation of concerns is that the toolset can now be used more flexibly. The tutorial system is no longer
limited to exercises on Statistics; as long as the developer appreciates the restrictions of the technique
another course can be designed.

4.1.1.2 Classification of Tootsie

The design process started with an analysis of what the student is supposed to learn during the course. As
no preliminary knowledge of Statistics is required, the student will be introduced to the basic principles of
probability theory and statistics, for instance Kolmogoroff’s axioms, Bayesian laws, and hypothesis tests.
In this case drill-and—practice programs are the most suitable choice. The advantages and disadvantages
of classical drill-and—practice tutorials have been outlined in Section 2.2.1, and based on these I made
the decision to add more functionality to my system in order to compensate for the different needs of the
students:

e Hypertext environment
My system is based on the hypertext mark—up language HTML which makes it possible to be
accessed not just within the university but also from outside. The user can select a hypertext link

59

60

Tootsie [Section 4.1]

Developer’s Ideas

Toolset

' Frame Exercise '

User Interface

:

User

Figure 4.1: Architectural scheme of the Tootsie environment. The system developers enter their exercise
ideas into the toolset which creates the appropriate pages and an organisational framework. The pages
are displayed in the user interface.

to get more information from the glossary, to ask for help, to choose a different, chapter of the course
or to change to the cooperative work area of the system. Therefore the often strict linear flow of
drill-and—practice programs can be influenced by the students themselves.

Table of contents

From the table of contents the user will be able to select any desired chapter. As the table of
contents is not automatically generated, but manually created by the developer, certain chapters
or exercises can be hidden from the user’s access. This functionality breaks with the guided tour
approach of classical drill-and—practice tutorials.

Add-ons
A pocket calculator and value tables have been integrated into the system, thus the user does not
have to leave the workspace for simple calculations.

Cooperative work area

The cooperative work area offers a basic chat tool and a discussion group. Here I have tried to
create the cooperative workspace which is often demanded by tutorial system theorists. Section
4.3.2 explains their functionality and their intended use in—depth.

Exercise wizard

In general, the exercise wizard is an overview page detailing what the user has done up—-to—now
and which exercises are recommended to be visited next. It was introduced to give the user a new
starting point when they become “lost—in—hyperspace”, a negative side—effect of hypertext systems
about which a number of writers have frequently complained. Section 4.3.1.4 gives more details of
the information offered by the exercise wizard.

Adaption

Tootsie offers a simple adaption layer to the developer. According to the user’s input the adaption
variables will be set and the globally stored information can be accessed by the system. How these
values are interpreted by the system and what the reactions are, must be defined and programmed
by the developer.

It is not correct to call my system a traditional or even intelligent tutoring program. With the classification
of Section 2.2.2 in mind, a traditional tutoring system introduces a complex subject, asks questions of
understanding and proceeds differently based on the student’s answers. With the introductory course on
Statistics I had planned mainly to train the student’s abilities to solve exercises in the final exam at the
end of the semester, so the complexity of the subjects is low and is covered in the lecture. Additionally, the
system architecture is different from intelligent tutoring systems as Section 2.3 shows. Basically it is still

[Chapter 4] Implementation 61

possible to transform my system into a more advanced CAI program by using a more complex teaching
scheme, introducing new types of exercises, or adding new adaption variables. The flexibility of my system
is therefore discussed in the extra Section 4.2.5. The differences between my system and an intelligent
tutorial system cannot be so easily compensated for. As the classification shows, an intelligent, tutoring
system is based on theories of cognitive psychology and artificial intelligence. Often a knowledge—based
system is the fundamental core of the program. The modifications to my system would be complicated
and they would not conform to the currently used technique, as accessing external applications is not
supported by JavaScript. Java, CGI programs or the CL-HTTP server are therefore better suited to
query a knowledge base and store detailed student’s profiles.

4.1.1.3 Implementational Technique

What kind of technique are we using? I have decided to base the tutorial system on JavaScript and
Cookies. Section 3.5 describes the technique precisely, so I will summarize here the reasons on which my
decision was based:

e Availability
JavaScript is part of modern world—wide web browsers, so most users can access documents which
contain JavaScript source code.

e Portability
My targeted user group has access to the world-wide web with Netscape Navigator 3.x only, so the
difficulties with Microsoft Internet Explorer are not considered as a major problem. Nevertheless it
may be necessary to modify my system to ensure that it will also run with Internet Explorer.

e Integration
In world—wide web documents that contain JavaScript code other technologies like plug—ins, CGI
program calls, and Java applets can be integrated, so functionalities which JavaScript does not
offer are then available. A communication link between the different objects is established with
LiveConnect.

e Local
With Netscape’s Navigator 3.x students have the possibility to download the tutorial system files
and access them from their hard disks.

e Intended use
In general, Tootsie is a drill-and—practice program with additional functionalities such as user adap-
tion (see Section 4.2.4) and the exercise wizard (see Section 4.3.1.4), which could be implemented
with JavaScript and Cookies. Complex learning environments however, like intelligent tutoring sys-
tems or simulations, require the possibilities which only Java, or CGI and CL-HTTP in conjunction
with external programs, can offer.

e Time—factor
The work on this master’s thesis was scheduled for a six months period. In that short amount
of time JavaScript promised the most and best results as learning a new programming language
was not required and as organisational details, for instance setting up a CL-HTTP server, did not
influence the start of coding.

e Novelty
At the time of writing T am not aware of a similar system which uses JavaScript for user adap-
tion and course management to the extent that Tootsie does. Consequently, trying and examining
the possibilities of JavaScript promised a particular impulse for the on—going work on the thesis.
The outlook in Chapter 5 will also suggest further extensions and modifications to my prototypal
implementation.

The main reasons for rejecting the other techniques were:

62 Tootsie Development System [Section 4.2]

e HTML 4.0
All the proposed HTML 4.0 extensions have not been added to the standard yet, so most of the
browsers, which are currently in use, cannot interpret the new HTML tags. Additionally none of
the introduced link types provide the functionality to adapt to the user’s needs.

¢ Knowledge—based HTTP—server
The recommended CL-HTTP server shows how easily existing knowledge—based tutorial systems
can be published in the world—wide web without any fundamental changes. However, as I had to
design a tutorial system from scratch, I did not have a knowledge base on which a CL-HTTP server
could be built on. Unfortunately a new knowledge—based system cannot be implemented within a
few months.

e Plug—in
External tutorial systems written with development tools like Macromedia Director can only be
accessed if the appropriate plug—in is installed. Unfortunatly this is not the case at the computer
centre of the Technische Universitdt Miinchen. As students from that university are the targeted
user group, plug—ins were rejected at an early stage of the development.

o CGI
The main reasons against CGI applications are the higher work—load on the server, which will result
from the number of queries by the different user clients, and the request—response protocol which
hinders real interaction between student and system.

e Java
Most of the functionalities, like interactive graphs or basic tools, can also be implemented as Java
applets which are then integrated into the tutorial system. Thus, it was not necessary to design
a system which was solely coded in Java. In addition, the commonly known user interface of a
web browser provides a suitable navigation control of the tutorial system, so enhancements of the
interface which can only be realized in Java were not necessary.

4.1.2 Overview

The next chapters describe implementational details of the toolset and the user interface of the tutorial
system. I will show what preparation was needed, describe how the toolset is used and explain how
exercises, which have been generated by the toolset, can be extended for more user interaction. In the
chapter on the user interface I will answer the questions concerning the use of the cooperative work area
and how the system assists the student.

4.2 Tootsie Development System

By programming the toolset for the tutorial system Tootsie I avoid making system developers repeatedly
work on the same tasks for a number of exercises. For example, JavaScript functions which specify the
reactions of the tutorial system on user’s input are stored within the HTML file, so it is inevitable that
certain code sections appear in many files of the system. If these are manually copied by the system
developers the risk of errors is high. The toolset consequently reduces this risk by offering a user interface
in which all the relevant data can be entered by the authors.

4.2.1 Preparations

4.2.1.1 Step 1: Technique

Some preparations must be made before the tutorial system toolset can be used. The developers must
firstly ask themselves what type of course they want to write. They should carefully consider whether
JavaScript and Cookies are appropriate for their needs. In general, this technique is recommended for

[Chapter 4] Implementation 63

exercises which train the students in basic skills, but not for courses which include complex problem
solving. A course generated by the Tootsie development system is therefore best combined with an
introductory lecture which provides basic knowledge skills needed in a course. I also recommend asking
questions of the knowledge domain in the form of multiple—choice exercises, so student monitoring can
be based on event handlers.

4.2.1.2 Step 2: Exercises

Once the technical problems have been discussed the developer must prepare the exercises and decide in
which order these should be presented to the students. In its current version the toolset offers four types
of exercises:

e Single—choice single—correct
An answer must be selected out of five different choices of which only one is correct.

e Multiple—choice multiple—correct
At least one answer must be selected out of five different choices of which more than one can be
correct.

e Any—answer question, i.e. free format answers
Up to three text entry fields, which can be completed by the students, are displayed.

¢ Hints—and—feedback
This type of exercise neither asks questions nor expects answers: it instead provides explanations,
gives feedback or introduces a new subject or chapter.

If system developers need additional types of exercises they must write the appropriate programs and
add these to the toolset environment. Section 4.2.5.2 explains this subject. [HALL ET AL., 1996] describe
the process of building a resource base of exercises and course documents, which involves collecting,
organising, indexing, and linking many types of information, in one phrase:

[...] reject nothing. It is essential to gather together all the information that might be relevant for a
particular subject area. In the initial stages authors should not have any pre—conceived ideas about
what is or is not going to be relevant or useful for their particular task [...]. (p106) The important
thing is not to focus too closely on that particular task [that is envisaged for the users] during the
resource-base building phase. The teacher instead should collect all the resources which either are
relevant or might be relevant [...]. (p107)

Adding hypertext links to the generated exercise files is supported by the Tootsie development system.
Developers must design a network of links, which represents the intended course flow. Their responsibility
is to create a link structure which best suits the different students’ learning abilities. Five difficulty
levels can be chosen which should provide a more individual learning environment for novices and
more experienced students. These levels can alternatively be used to adapt to the motivational learning
characteristics of individual students, which can either be failure— or success—driven.

4.2.1.3 Step 3: Resources

The developer must adjust the resource variables of the toolset. These are necessary to adapt the
toolset and the tutorial system to the current environment of the computer system on which they are
running. The variables do not effect the course or the learning methods and they are not involved in
building a resource-base as mentioned before. When the development system is started it will look for
the resource files in which information of the toolset and tutorial system environment, e.g. source and
target directories, is stored. Appendix A describes each resource variable in detail.

64 Tootsie Development System [Section 4.2]

4.2.1.4 Step 4: Templates

The template files define a general layout pattern for each exercise type, but developers can nevertheless
adjust the HTML code of the resulting exercises to their needs or add new JavaScript functions. A
positive side—effect of templates is that similar code sections, which frequently appear in exercise files,
can be recycled: if they are once incorporated into a template, they will then automatically be copied
to any new exercises created. In general, this reduces the risk of code errors that may occur if the code
sections are manually copied. Whenever authors of tutorial systems use the development system in writing
exercises, the template file is filled with the input of the exercise forms and stored as a new exercise in the
Links directory of the tutorial system. Templates therefore contain special placeholders, called tokens,
which are replaced with the information entered by the developer. The tokens are defined in the resource
files and must be altered if the token names change. Despite the benefits of templates it is recommended
that the interaction between the user and the tutorial system be enhanced by adding individual code to
exercises provided this does not interfere with existing JavaScript functions. Consequently, the student’s
problem solving can be better monitored and analysed: for example, in a complex exercise, in which text
entry boxes must be filled out by the learners, the order in which the text is entered can be recorded,
and based on this information the tutorial system can react more specifically.

4.2.2 Toolset System Architecture

The toolset is divided into two different groups of files. Firstly, it contains the CGI programs written
in C which process the input forms of the user interface. These programs are not used by the tuto-
rial system except for the tools of the cooperative work area and the questionnaire. The developer
must copy the compiled CGI programs into a directory which can be accessed by a world—wide
web browser. The second group of files is written in HTML, and defines the user interface and the
input forms of the toolset. It can be used with any world—wide web browser which is capable of JavaScript.

Tutorial system exercises will be stored in the directories which are defined in the resource files of the
toolset. I recommend creating the following subdirectories in the root tree of the tutorial system: Links
for exercise files, Applet for Java applets required by the tutorial system, Image for inline images, and
Glossar for glossary keywords.

4.2.3 Generation

The development system is started by loading the main screen of the user interface with a world—wide
web browser. On the left—-hand side the table of contents, which lists links to various input forms, is
displayed, while on the right—hand side the workspace of the system developer is shown.

4.2.3.1 Step 1: Glossary

Before a glossary keyword can be used in an exercise it must be defined in the glossary form of the
Tootsie toolset. Once defined a registered keyword can appear in any introductory text of an exercise,
and a suitable hypertext link to the glossary text will automatically be set.

1. Keyword
The developer must enter a keyword which is not yet defined. The keyword must be spelt exactly
the same way as it will be used in future exercise texts.

2. Title
Optionally a title can be entered for the glossary keyword.

3. Explanation
The glossary text explains the meaning of the keyword. The developer can use HTML tags, but other

[Chapter 4] Implementation 65

structural information, like newline characters, will be lost. The commands image (<filename>) and
applet (<filename>) include in the text an image or Java applet with the name filename provided
these are stored in the image or applet subdirectories.

The lower section of the browser window, which is also called frame, shows an overview table of glossary
keywords, so the developer can see which keywords are already used. The contents of a glossary file are
displayed if the View link is clicked.

4.2.3.2 Step 2: Exercises

“Documents should be organised according to whatever (hopefully multiple) structures are required.
[...] This is an important phase of the authoring process as this structure provides in many cases the
first and primary interface to the information, and as such will tell the user quite a lot about how
the author understands the structure of the information, and hence about the subject matter itself
([HALL ET AL., 1996], ppl07/108)”. Although this principle is very general, the author of a tutorial
system must nevertheless keep it in mind when writing exercises or introductory texts, particularly
because CSS which could provide the multiple document structures are not yet available. After selecting
an exercise the upper frame of the browser window shows an input form, while the lower frame displays
a table with exercises which have already been defined.

1. Title

The filename of a new exercise will be created from the input of the title entry field. As exercises are
often part of an exercise section, it is reasonable to store each section in its own subdirectory tree.
A directory tree is defined by writing a hierarchy of section names, which start with the topmost
section, into the entry field. Section names must be separated by commas, and the hierarchy must
end with a unique exercise group' name. For directory and file names only the first six letters or
digits of the section or group names are used. The title line of the new exercise will nevertheless
show the complete definition.

2. Glossary keywords
The system developer enters the keywords which must be looked up in the glossary, in form of a
comma—separated list. If a keyword is found in the exercise text a hypertext link to the glossary
entry will automatically be set.

3. Help (not available in hints—and—feedback)
If system developers want to provide help pages for the students they must enter the following code
into the help entry field: {#<levels>#<text>}. The help text <text> is added to each help page
whose help level is mentioned in the preceeding <levels>. The character # separates the different
levels and text definitions, so it is not allowed to appear in <text>.

4. Text
Depending on the exercise type the introductory text must be entered and an appropriate question
asked. The text can only be structured by using HTML tags. The keywords image (<filename>) and
applet (<filename>) automatically add the object filename from the image or applet directories
to the exercise.

5. Answers (not available in hint-and-feedback)
Entry requirments vary according to the exercise type: for single—choice and multiple—choice exer-
cises up to five answers can be entered, of which the correct one(s) must be ticked. Any—answer
exercises require a question and the correct answer expected from the student. In addition, the
keywords image and applet can be used.

An exercise group is a collection of exercises which have the same title (e.g. they introduce the same knowledge units)
but differ in their difficulty levels. An exercise section is a bundle of exercise groups which are part of a common topic
or goal.

66

Tootsie Development System [Section 4.2]

6. Difficulty

The developer is asked to rate the difficulty level of the current exercise from “trivial” to “difficult”.
As mentioned before the various difficulty levels of an exercise group can also be applied to provide
a learning environment based on the different motivational characteristics of students.

Marked (not available in hint—and—feedback)

The developer must decide whether or not an exercise is marked. Only information of marked
exercises, e.g. whether it was correctly solved or how often it was tried by the student, is stored
in the Cookie variables of the tutorial system on which all the adaption rules and the individual
learning support depend. Unmarked exercises however are useful if it is necessary to introduce
students to a new topic, which is then completed by a marked terminal page. If an exercise group
contains a marked exercise, the group is also “marked”, but this does not effect the status of
unmarked exercises of the same group.

The Generate. .. button calls the underlying CGI program, and a new exercise file is created. A Reload
of the lower frame then shows the new exercise entry. The entries consist of a title line, a difficulty level
and an exercise type. By clicking on the View link the exercise page is displayed in the upper frame.

4.2.3.3 Step 3: Links

A new exercise is integrated into a tutorial system by setting hypertext links to other exercise pages.
In order to make this process easier for the system developer, an overview table of existing exercises is
displayed: if a Copy link is selected and a command button clicked, the necessary information will be
copied into the entry fields of the input form. A screenshot of the actual form is shown in figure E.1 on
page 101.

1. Exercise

When clicking on Page the text entry box will be filled with the data of the exercise, whose Copy
link was previously selected.

. Links

The course flow depends on the “link rules”, for which JavaScript code must be entered by the system
developer for each exercise. The rules will be executed whenever the student selects Continue. ..
in an exercise page. In addition, the following commands and JavaScript functions can be used:

e link(<filename>);
sets a link to the exercise <filename>.

e link(<group>);
sets a link to the exercise group <group>. From that group an exercise with the current
difficulty level is loaded. If such an exercise does not exist, the tutorial system will try to find
the “closest” one. This means that the difference between the current difficulty level and the
one of the closest file is minimal.

e reset(<filename>); (only marked exercises)
resets the flag of the exercise <filename> from successfully done to not done yet. The
function reset does not work with the current exercise.

e isset(<filename>) (only marked exercises)
checks whether the exercise filename has already been successfully solved. In this case the
function will return true or 1.

e isset(<group>), only marked exercise groups
checks whether any exercise in the exercise group <group> has already been successfully solved.
In this case the function will return true or 1.

e revisited (only marked exercises)
if a student has already solved the current exercise, the variable revisited will be set to true
or 1.

[Chapter 4] Implementation 67

e repeated (only marked exercises)
if students access an exercise again although they have already solved it, they will be asked
in a dialog box whether they want to repeat the same exercise. If they confirm the variable
repeated will be set to true or 1, false or 0 otherwise.

® correct
if a student has correctly solved an exercise, i.e. all the answers correspond to those entered
in the input form of the exercise type, the variable correct will be set to true or 1, false or
0 otherwise.

e item[<index>]

is used as an abbreviation for reading the status of radio buttons, check boxes, or entry fields
which the student can tick or fill out in the current exercise. Each of the input objects has
an index number which starts with 0 for the topmost object and is increased by one for each
object beneath. It is important that for items of single—choice and multiple—choice exercises
comparisons like ==, != etc. are not allowed. In contrast to that, boolean operators, like &&,
[| etc., cannot be applied for entry fields of any—answer exercises. If these restrictions are not
observed by the system developer, a JavaScript error message will be produced when students
access the tutorial system.

3. Comments
Comments or feedback which system developers want to give users on consecutive pages must be
defined in the following way: {#link(<filename>) ;#<text>}. <text> will only be shown if the
current exercise is successfully solved. Again, <text> can be structured with HTML tags and the
separating character # must not appear in <text>. Unfortunately <text> cannot be source—specific,
this means that any exercise which is correctly answered and has <filename> as its successor will
trigger the comment <text>.

Clicking on the Generate. .. button will modify the current exercise file by adding the JavaScript code
of the link rules.

4.2.3.4 Step 4: Link Reference

If many exercises are linked together, the link structure of a course can become incomprehensible.
Therefore, the overview table of all established links assists the developer finding the destinations of
source anchors. [HALL ET AL., 1996] also see the importance of avoiding chaos during the authoring
process (p110). Their hypertext system, whose link model is far more sophisticated than HTML, offers
two views: first a link index document, which is generated from the linkbase? and sorted alphabetically,
and second, various documents or linkbases, in which links are sorted according to their purpose (p111).
All the source pages are written on the left-hand side of the overview table, while their immediate
successors are on the right. By clicking on a destination the overview table will be scrolled to the
left-hand side position of the selected exercise. The digits which are written in superscript after the title
of an exercise denote the difficulty level of that file. If there is an x instead of a number the target page
will be selected from the given exercise group according to the user’s difficulty level.

4.2.3.5 Step 5: Table of Contents

The table of contents of a tutorial system is not automatically generated. This gives the developer
control over what can be directly be accessed by the students, in particular if students have to solve
introductory or unmarked exercises before they should proceed. In addition, advanced topics can be
hidden, so students do not inadvertently read these beforehand. A good idea is to include documents,
which are described by [HALL ET AL., 1996] as follows:

2 .. a database of links.

68 Tootsie Development System [Section 4.2]

Users need pointers to the important part of the material, which can only be provided in the context
of their task. Therefore documents which answer questions for the user such as “What am I doing
here as a student?”, “what are the objectives and the aims?” and “how am I to go about achieving
those?” are not just “nice” but are vital for users to get the most out of their interaction with and
use of the information. (pp114/115)

The structure of the table of contents is defined by using HTML tags. However, the reserved space of a
table of contents is limited in the current version of the tutorial system Tootsie, so only a narrow list
structure is recommended. An exercise group is added by selecting the Copy link and clicking on the
Group button. Instead of the full title for each group only the last portion, generally the title of the file,
will appear in the resulting table of contents.

4.2.4 Adaption

Most authors see adaptability as an important feature of tutorial systems for increasing acceptance levels
of students. In its most sophisticated form a student model is generated by the system?®, but depending
on the used technique lower forms of adaptability can also be applied. [WENGER, 1987] explains three
forms of adaptability:

No intelligent communication can take place without a certain understanding of the recipient. [...]
Some systems monitor the student’s activity very closely, adapting their actions to the students’
responses but never relinquishing control. In mixed—initiative dialogues, the control is shared by the
student and the system as they exchange questions and answers. [...] In guided—discovery learning
or coached activities, the student is in full control of the activity, and the only way the system can
direct the course of action is by modifiying the environment. (pp16/21)

The decision was made to use guided—discovery learning in the Tootsie tutorial system, however
with JavaScript the adaptability is reduced to a very basic form. The authors of tutorial systems
must therefore responsibly decide what exercises they choose and in which way they present those
to the student. [SCHULMEISTER, 1997] has interesting thoughts on the problems which arise in ac-
complishing adaptability in an intelligent tutoring system. He rightly notes that the functionality of
adaption must lead to further differentiation of the learner’s parameters because adaptability wants
to be “natural”, and not coarse or artificial. The increased granularity of the monitored variables
however leads to a combinatorial explosion of the diagnosis process, so finally it is only a form of
microadaption that intelligent tutorial systems can currently use. [SCHULMEISTER, 1997] unfortu-
nately notes that hermeneutical adaptability, where it is possible for the student to browse in a
broad information domain and work with it individually and selectively, is unthinkable for tutorial
systems (p201). In many cases only an unlimited information space can promote this level of adaptability.

4.2.4.1 Adaption Variables

As mentioned before Tootsie uses persistent client—state HTTP information, called Cookies, to store a
basic student’s profile on which the adaption process is based. Whenever the student accesses the tutorial
system, the Cookie data will be read and updated on the client’s side, i.e. the Cookie file in the student’s
home directory. In the current version Cookies have a life span of one year, which should be long enough
for a course that lasts one semester. The following variables are set by the system:

e tootsie_cont
This Cookie is used by the tutorial system to store which layout was chosen for the table of contents

3 See page 17.

[Chapter 4] Implementation 69

by the student. Currently there are three settings: “extensive” (Large TOC) which displays all entries
of the table of contents, “basic” (Short TOC) which only shows those entries which are not yet
solved, and “annotated” (I suggest) which recommends exercises by writing them in bold—faced
or italic—faced font.

e tootsie dlvl
The student’s current difficulty level, a numerical value, is stored in this Cookie. The value, ranging
from one to five, can be changed either by the student or the tutorial system. In the latter case the
system developer must add a JavaScript procedure called Adaption() to each template file. The
variable is used to load exercises, whose difficulty rating is closest or equal to the current difficulty
level.

e tootsie hlvl
The numerical help level value is used whenever the student selects the help button of an exercise.
Based on the help level stored in this Cookie a help file is displayed. If a help file is not defined by
the developer, no help button will be shown in the exercise. If a help file is defined for at least one
help level, a default text for the remaining levels will be used.

e tootsie_info
The string variable stores for each marked exercise group the difficulty levels of that group that
were correctly solved. The information is encoded in alphanumerical form, so each letter represents
the status of the whole group. If an exercise is not marked the group value will not be changed.

e tootsie name
If a new user accesses the tutorial system for the first time he will be asked to enter a name, which
is not necessarily his real name. The information is stored in this Cookie and will be displayed
whenever the student returns to the start screen of the tutorial system.

e tootsie nexe
The string variable records how often a single exercise was tried by the student. The information
is alphanumerically encoded and saved in a single letter whose binary value will be increased up to
a maximum of 25 student accesses. The value will remain unchanged if an exercise is not marked.

e tootsie nexr
The numerical value counts how many exercises were tried by the student in the current session.
The information will be kept until the user clicks on the start button of the welcome screen. It will
remain unchanged if an exercise is not marked.

e tootsie prev
This “true—false” Cookie is used if an exercise is correctly solved by the student. If the system
developer enters a comment in the HTML form for defining link rules, the text will be displayed in
form of a feedback in the next exercise.

e tootsie_rsoe
The string variable stores for each exercise how many times the exercise was solved by the student
until the alphanumerical value — each exercise is represented by a letter — exceeds the maximum
of 25 correct solutions. The value will remain unchanged if the current exercise is not marked.

e tootsie_rsol
The numerical value counts how many exercises were solved by the student in the current session.
This information will be kept until the user clicks on the start button of the welcome screen. The
value remains unchanged if the current exercise is not marked.

e tootsie_zahl
The numerical value counts how many times the welcome screen of the tutorial system was accessed
by the student.

System developers can add new Cookie variables, but they should keep the restrictions mentioned in
the Cookie spezification by [NETSCAPE DEVELOPER, 1997E] in mind. The template files included in the
tutorial system, Tootsie, currently offer two procedures to read and write Cookie values: GetCookie and
SetCookie.

70 Tootsie Development System [Section 4.2]

4.2.4.2 Adaption Procedure

According to the information which is stored in the Cookie variables the tutorial system can react before
the student needs to ask for help or becomes lost. For adapting the course flow to the student, the
system developer must add a JavaScript function to the exercise template files. The current version of
Tootsie does not have an adaption procedure, but its suggested position in the source code and its name
are represented by a deactivated Adaption() function call. With the help of the Cookie variables the
following questions could be answered:

e Has the student solved a introductory exercise?

e How many exercises have been correctly solved in the current session, and how many has the student
tried?

e Is the current difficulty level therefore too high? Or is the help level too low?
The following example shows another approach to adaptability. [HARRER, 1996] describes in his master’s
thesis how the tutorial system Sypros assumes the student’s understanding of a domain by rating the
different subtasks of the internal representations of the student’s problem solving steps. The moment at
which the tutorial system assists the student is controlled by the following parameters:

e Cognitive complexity of a information domain (based on the student’s knowledge).

e Motivational disposition of students, which is either more success— or failure—driven.

e Amount of time which has passed since the last assistance.

Amount of time which has passed since the student had difficulties with the current goal.

Type of last intervention.

o Difficulty level of the current goal.

In addition, the reactions of the tutorial system, Sypros, are based on “tutoring rules”, a catalogue of
“ifthen—rules” which must be defined by the system developer according to the knowledge domain and
didactic principles ([HARRER, 1996], pp85-95).

4.2.5 Flexibility

It is possible to combine the different techniques which can be used for implementing a tutorial system in
the world—wide web, to gain the most benefits for interaction between students and system. Incorporating
Java applets and plug—ins in HTML documents, on which the tutorial system Tootsie is based, is simple,
and so it is possible to offer simulations and interactive graphs to the students. I will however propose
other ideas, which describe how Tootsie — in conjunction with its current technique JavaScript — can
be modified to introduce more complex teaching schemes.

4.2.5.1 Events

Tutorial systems with a sophisticated student—model, e.g. Sypros, are already in use. They constantly
monitor the student’s activity and build up an internal representation of the student’s knowledge of a
given problem. If the student does not follow the presumed path for solving an exercise, the internal
representation will respectively be modified. For recording the student’s activities, JavaScript code which
follows the student’s operations must be added to the exercise template files of Tootsie. I suggest using
event handlers, which are called whenever user events such as mouse clicks occur. These can be defined for
each entry item of an HTML form. For example, if the student changes the value of a text entry box, the
event onChange will be issued by the browser, on which a JavaScript function can react. The new events

[Chapter 4] Implementation 71

which will be introduced for HTML form objects in the new HTML 4.0 standard, will make possible
better understanding of the user’s current intentions. There is, however, a major drawback: the size of
an exercise file will inevitably increase, and so reading files from the world—wide web will become slower.
This can be prevented by using Java applets combined with a database of exercise texts which is queried
when user actions occur (like the graph applet of PUSH which is mentioned in Section 3.6.2.1.). If this
method is adapted it would, however, be better to implement the tutorial system in the programming
language Java rather than JavaScript and Cookies.

4.2.5.2 Exercises

Adding new exercise types to the existing system requires experience in C programming. Nevertheless,
the following enumeration describes which steps must be done by a system developer:

1. Input form
An input form for the new exercise type must be defined by the system developer. In this respect,
the entry fields “title”, from which the filenames will be derived, “exercise text”, and “difficulty
level”, which ranges from one to five, are important. In addition, a radio button is necessary for
setting a flag which denotes whether or not an exercise is marked.

2. Template and resource file
The structure of an exercise and the reactions of a tutorial system are defined in a template file.
If the new template is similar to the existing ones I recommend using the same tokens which are
mentioned in the current resource files. Otherwise a new exercise generator program which is called
by an input form must be written.

3. Generator program
The generator program replaces the tokens in the template files for the data, which was entered by
the system developer in the input form. All exercises are currently created by different generator
programs, which are however based on the same source code. For a new type of exercise a new
generator program with different source code may be necessary.

4. Setting links
It is necessary to modify the overview tables and input forms which are introduced in Section 4.2.3.
In particular, the form for setting links and the link generator program must be adapted to the new
exercise type.

A more advanced teaching scheme can be introduced by event handlers and new types of exercises. For
complex systems, however, I recommend using a different technique than JavaScript and Cookies. For an
intelligent tutoring system storing a permanent student model, providing a sophisticated tutor model,
and accessing a profound expert model is necessary. These requirements can only be achieved by using
external programs, like Java, knowledge bases, or CGI programs.

4.3 Tootsie Tutorial System

This chapter describes the learning environment of the tutorial system Tootsie. I will explain the general
structure of the user interface — its components and their dependencies are shown in figure 4.2 — and
give reasons for implementing a cooperative work area. In general, the tutorial system should support the
various and individual learning methods of students, but in particular, system developers must concentrate
their design issues on the course domain as the user interface should primarily be “context—dependent
than student—dependent” (see [SCHULMEISTER, 1997], p41).

72 Tootsie Tutorial System [Section 4.3]

Start
______________ |
0 |
Registra- :
tion Wizard
|
v Y
.. Coopera-
Course = tive
|
v v v Y Y Y
Exercise | {Wizard -1 Add-Ons Cookies Chat News

Figure 4.2: After clicking on the Start button in the start screen of the tutorial system Tootsie students
are either sent to the registration screen (if they are first—time users) or the exercise wizard. From there
they can both join the cooperative work environment and the course area of the system. The dotted lines
represent easy transfers between the various components of the user interface, for example by clicking
on the links in the menu. The latter is only possible from “Course” to “Cooperative” but not vice versa.

4.3.1 User Interface

The tutorial system Tootsie runs in a world—wide web browser window, whose user interface restricts the
possibilities for interaction with the student. This is not a severe disadvantage, because most students
are already familiar with using a world—wide web browser, so a de facto standard of interaction and
navigation in the world—wide web is set. Tutorial system developers should therefore avoid differences
between this standard and the interface of the tutorial system itself (see [EsPINOzA & HOOK, 1996]).
Although the current version of the HTML is not very flexible*, designing a well-structured interface
is nevertheless very time—consuming, as the usability of the system and the student’s learning progress
depend on it. Knowledge can be communicated and presented in a more or less intuitive way, so the
student’s acceptance is primarily influenced by the ease—of—use and the attractiveness of the interface
(see [WENGER, 1987], p21). HTML 4.0, and cascading style sheets give the developer the ability to raise
that acceptance. Another idea for a hypertext user interface is suggested by [HALL ET AL., 1996]: they
demand the end of the tyranny of the button® (p157).

We encourage our authors to only use buttons when they really need to, but we clearly have a
serious re—education problem ahead of us. People who are used to HyperCard or the Web expect
links to be indicated by buttons. [...] There is a place for buttons in hypermedia systems [...], but
they do not have to be there in order for us to take advantage of the enormous potential of hypertext
technology. Drawing an analogy with the way we use books and libraries, we know intuitively when
reading a book that we can look up any word or concept we do not understand in a dictionary or
encyclopaedia, assuming they are available, or look up any term in the index for a cross-reference,
without the author having to make any indication in the text. (ppl57/158)

The idea is that any word in a world—wide web page or hypertext system is a potential link to a definition
or explanation of that word. This supports Schulmeister’s opinion that hypertext presents a complex
learning environment to the students, which allows them to behave in a natural way by browsing the

4 This will change with HTMT, 4.0 and its successor, the extensible markup language XMTL.
5 In general, “buttons” are highlighted objects which are used to navigate between hypertext documents. For example, in
HTML “buttons”, i.e. links, are commonly marked by an underlined text.

[Chapter 4] Implementation 73

information space ([SCHULMEISTER, 1997], p271).

4.3.1.1 General

After loading the tutorial system, four coloured sections of the main browser window, called frames, are
displayed (as shown in figure E.2 on page 102). Their purposes are:

e Black
The menu frame contains links to the help pages, the cooperative work area, the questionnaire, and
the Cookie cutter. There is also a link for quitting the tutorial system by closing the browser window.
If the mouse pointer is moved over a link, a more comprehensive description will be displayed in
the status line of the browser window.

e Darkgrey
Help documents and explanations of glossary keywords, which were previously selected by the
student before, are displayed in “darkgrey” frame. The same frame is used for the add—ons “standard
distribution” and “pocket calculator”. Both are integrated into the tutorial system to support the
student in solving exercises on probability theory and statistics.

e Lightgrey
The frame is reserved for the table of contents of a course, and is currently displayed as a text—based
and structured list. A different technique is applied by [EsPINOzA, 1996]: he uses an interactive
graph applet written in Java, which provides an overview of neighbouring and related documents
based on the currently selected information unit. The student can simply navigate in the knowledge
domain by clicking on the objects of the graph.

e White
The “white” frame is reserved for the student’s workspace environment, which consists of exercises,
welcome pages, and Cookie cutter information.

The use of frames is often part of controversial discussions on the design of web sites. An advantage is
that a frame is an independent section of the browser window, which means that other frames are not
influenced, for example by scrolling. A second argument is closely related to the first one: all the frames
are constantly visible and, in contrast to windows, they cannot overlap. [SCHULMEISTER, 1997] quotes
a 1989 paper by Jonassen which suggests limiting the number of windows that may be opened by the
user at any time and expressly forbids overlapping windows in a display (p391). [SCHULMEISTER, 1997]
however disagrees: he argues that multiple windows do not detract from the usability of tutorial systems
as users get more and more familiar with window systems (p391). In my opinion Schulmeister’s arguments
are reasonable, but only if the different windows are not constantly needed. This is the case however with
the table of contents, the exercise pages and the help texts of the tutorial system Tootsie. A peculiarity of
frames is that with Netscape’s Navigator 3.x a bookmark can only be set to the start page of a web site,
but not to any consecutive documents which are rendered inside a frame. In general, this is a disadvantage,
but not in the tutorial system Tootsie, which needs a suitable starting point to reset the system for each
session.

4.3.1.2 Menu Items

The menu of the tutorial system is shown in the “black” frame of the browser window. Its contents are:

e Help, symbol: ?
If students require assistance for the different screens of the tutorial system, they can click on the
help link in the menu frame. Depending on the displayed document a context—sensitive help page
with frequently asked questions is loaded. However, questions regarding specific exercises should
only be answered in the “darkgrey” frame.

74

Tootsie Tutorial System [Section 4.3]

Chat, symbol: :)
The chat tool, which is part of the cooperative work area, is explained in Section 4.3.2.1.

News, symbol: !
The possibilities of the news group are discussed in Section 4.3.2.2.

Email, symbol: @
After selecting the email link a list of people who are involved in the current course is displayed, so
a student can contact the system developer, tutors, or lecturers.

Cookie, symbol: *
The Cookie cutter is described in Section 4.3.1.3.

Wizard, symbol: A
Information on the exercise wizard can be found in Section 4.3.1.4.

Feedback, symbol: F
Students should be able to express their opinion on computer—based learning, so after clicking on
the feedback link a questionnaire for comments and bug reports is shown.

Quit, symbol: X
This closes the browser window of the tutorial system.

The menu should be restricted to the most important or frequently used items, and if this is not possible,
or submenus are needed, a new menu structure is recommended (for example, with the help of select
boxes).

4.3.1.3 Cookie Cutter

Cookies are often regarded suspiciously by users, because they are stored in the user’s directory and their
data is often encoded. Therefore, it is generally difficult to have the user’s permission to set a Cookie
value. This is the reason why I introduced the Cookie cutter in the tutorial system to allow the students to
examine and modify the stored Cookie values. A positive side—effect is that students can also experiment
with the tutorial system by trying “what—if”—cases, for example: “what happens if an exercise is marked
as solved”. More details on the used Cookie variables can be found in Section 4.2.4.1.

e Overview of exercises

The overview table informs students as to whether or not an exercise has been solved. The columns
represent the various difficulty levels, so if a student clicks on a check box in the table, the exercise
rated with that difficulty level will be marked as solved. The Cookie value is modified by clicking
on Change.

Cookies for adaption

This page shows the values of the Cookie variables which store the difficulty level, the help level,
the number of exercises tried, and the number of exercises correctly solved. By clicking on the arrow
buttons the variables are respectively decreased or increased, and the current value can be displayed
by selecting the middle button.

Tootsie statistics
The two tables tell students how many times they have tried an exercise and how often it was
correctly solved. These values cannot be changed by the users.

The Cookie cutter can also be accessed by the system developer for test purposes: by modifying his
Cookie values errors and missing links can be found in the system.

[Chapter 4] Implementation 75

4.3.1.4 Exercise Wizard

The exercise wizard is supposed to guide students through the course. It suggests exercises and
assists students in planning their curriculum. If users are “lost—in—hyperspace”, it will help them
to choose a new topic or exercise. Users must normally select the exercise wizard entry in the menu
frame, but the developer can also set a link to the wizard in an exercise or terminal page of a course section.

As described in Section 3.2.4 [WEBER & SPECHT, 1997] use two similar adaption techniques, which
are called “individual curriculum sequencing” and “link annotation”. During their studies however they
discovered that the individual guidance only helps learners at the beginning of a course in following an
optimal path through the information space. In later sessions the students understood the hierarchical
structure of a course, and so most of them did not require further assistance in order to find the best
learning path. The exercise wizard will consequently have to face the same problem, but still individual
guidance prevents beginners and less skilled students becoming frustrated in the starting phase (see
[WEBER & SPECHT, 1997], pp10/11). The following information is offered by the exercise wizard.

e Difficulty
It shows the current student’s difficulty level. The remaining information, which is presented by the
exercise wizard, is solely based on this difficulty level.

¢ Exercises not solved
The titles of exercises, which are not yet correctly solved by the student, are displayed.

e Fuzzy links
This section suggests exercises which were once solved, but repeatedly incorrectly answered in later
sessions. The wizard assumes that the student has problems with a particular course subject, so it
recommends repeating the exercise. In a future version of Tootsie links to additional pages could
be included which would give more information on an exercise or try a different approach to the
problem.

e Recommendation
The tutorial system suggests whether a student should increase or decrease the difficulty and help
level. This advice is based on the number of correctly solved exercises, which is compared with the
number of all exercises that have been done during the current session. More specific rules can be
implemented by the system developer.

The wizard only processes exercises which are marked and listed in the table of contents of the
tutorial system. “Hidden” exercises are not supported, because they are primarily used as introductory
documents of a chapter instead of terminal pages or work sheets. The system developer should however
modify the source code of the exercise wizard in order to assist the student with all the information that
fits best to the course. After reading the recommendations the student can choose the next chapter or
topic from the table of contents.

4.3.2 Cooperative Work Area

Cooperative learning is especially useful for promoting the acquisition of knowledge because human
mental functions and achievments are rooted in social relationships (according to the Russian psycholo-
gist L.S. Vygotsky, see [SCHAFFNER ET AL., 1996], p4). This is, however, not restricted to face—to—face
meetings: with computers and computer networks world—wide cooperation is made possible by email
communication and computer conference systems. A newsgroup discussion, for example, is often similar
to team work: in general help behaviour is increased, hierarchical structures like student—teacher
relationships are less important, and the communicating partners have both opportunities to ask
and answer questions. Therefore, goals are faster and better achieved than in computer—assisted, but
competitive and individualistic learning environments (see [SCHULMEISTER, 1997], pp283/284).

76 Tootsie Tutorial System [Section 4.3]

The students’ individual learning characteristics greatly influence the success of cooperation. For
skilled students the learning method is less important, but less skilled learners mostly benefit from the
cooperative method. The advantage is that problems can be discussed with other students, thus errors
are quickly detected and more suitable algorithms for solving a particular problem are remembered (see
[SCHULMEISTER, 1997], p284). However, I must note that most studies which compared cooperative and
non—cooperative learning methods have not found any significant differences (see [SCHULMEISTER, 1997],
p284). T was nevertheless convinced of the benefits which cooperative learning could offer, so I introduced
the following two tools in the cooperative work area. In particular, benchmark lessons, which are
introduced in Section 4.3.2.2, offer a new form of discussion which increases the student’s knowledge
better than newsgroups and addresses more experienced learners.

4.3.2.1 Chat

In general, a “chat” is a program or a world—wide web site where different users, who often do not
know each other, meet in order to discuss previously agreed topics. The “chatters” enter sentences
with the help of their keyboards, submit the text to the chat group and read the answers on the
computer screen, which is frequently updated, so all participants are able to follow the discussion.
According to [SACKL, 1997] this form of communication is called “synchronous”, because messages
immediately reach the communicating partners and can be answered at once if the partners are present
at the same time (p47). Newsgroups, which are described in the following Section 4.3.2.2, represent
an “asynchronous” communication tool and need the ability to store messages which are sent by
the various partners® on disk, because members of a newsgroup rarely take part in a discussion at
the same time. Therefore, they must have access to all the messages which have been issued after
their last visit. A message can only be read by the participants of a discussion after it has been
posted. However, compared to the few seconds in synchronous communication, the delay between post-
ing a message, and the message becoming available to the other participating members is not insignificant.

Online asynchronous discussion lacks the real-time (synchronous) feedback of a live discussion.
However, it does allow students to compose their thoughts carefully, develop written commu-
nication skills, work away from school and have time to use references when considering their
responses. At the same time, we acknowledge that rewarding discussions must be active and timely
([SCHAFFNER ET AL., 1996], p16).

In the world—wide web chats belong to the most frequently visited sites, so their use is already quite
common and accepted. By adding a basic chat program I intend to give the students the possibility of
talking with each other about problems, solutions, and exercises. At least once a day a human tutor or
lecturer should be present, so he can also be contacted with the help of the chat tool. In the internet
the communication is often not moderated which means that people do not know with whom they are
talking, so this may be an advantage for students who feel insecure when talking to others face—to—face,
for example in a lecture etc. In a chat these students can participate more freely, and with the Tootsie
chat program they can also remain anonymous. The chat tool is selected by clicking on the link in the
menu frame of the tutorial system. Two new frames are displayed: the lower one contains the discussion
text while in the upper frame messages can be entered. At the beginning students are also asked for
their names”, which are then fixed for the current chat session. Messages are immediately sent to the
discussion, when the submit button is clicked. From that moment on the text frame is updated every ten
seconds, and students are able to participate in the discussion at any time. Their contributions are shown
with their names, the date, and the time of the posted message. In general, it is possible to introduce
different chats for various topics or groups of learners in order to offer an environment to the students
which is better based on their requirements.

6 This process is also called “posted”.
7 Called “avatar”.

[Chapter 4] Implementation 77

4.3.2.2 News

The implementation of the news tool was inspired by the benchmark lessons which are mentioned
in the paper by [SCHAFFNER ET AL., 1996]. In general, the current tool can be used to simulate
newsgroups commonly known from the usenet, however the benefits of benchmark lessons persuaded me
to introduce the same ideas for the tutorial system, Tootsie. Benchmark lessons are based on “facets”
which [SCHAFFNER ET AL., 1996] use as the building blocks of their tutorial system, DTANA. In general,
facets are described as pieces of knowledge that compose a person’s understanding. They represent ideas
which students have obtained from a certain domain, and it is the task of a human or computer—based
tutor to identify pre—existing and context specific facets in order to build instruction upon them. A key
factor of facets is that they can be recognized whenever the student uses them, for example in writing
or speaking. Therefore, a tutorial system can collect the various facets, and upon that decide which
advice must be given to enhance and extend the student’s skills and expertise. The development of
a facet database and the uses of facets in learning are thoroughly explained in [SCHAFFNER ET AL., 1996].

A benchmark lesson is a full-class discussion moderated by an instructor® and designed to provoke
group discussion of the facets held by the different students (p10). [SCHAFFNER ET AL., 1996] believe
that benchmark lessons in conjunction with lectures and case—studies stimulate thought and promote
students’ social interaction as learners must act together and occasionally change their attitudes
and ideas (p10). In a benchmark lesson a problem is presented to the students by the moderator or
lecturer, and from that moment on the participants of the discussion are asked to solve the task.
[SCHAFFNER ET AL., 1996] recommend structuring the postings of a benchmark lesson, so new facets
can be created, challenged and reflected by the students. A sample benchmark lesson is described in
[SCHAFFNER ET AL., 1996, Chapter 3.4], which I summarise here:

Our solution balancing the merits of asynchronous and synchronous discussion imposes a fairly rigid
structure and schedule on the discussion. Our virtual benchmark lesson has four primary parts: (1)
initial response and justification, (2) critique, (3) discussion and (4) reflection [...]. Social loafing
may occur when individuals do not feel that their participation is necessary for the group to function
fully. Rogelberg et al. (1992) introduced the “step—ladder technique”; a group discussion mechanism
that requires every group member to submit their ideas before any thorough discussion or conclusion
[...]. Once all initial responses and justifications have been posted, students read each other’s posts
and are required to critique at least one other post by either arguing in favor or against it while
providing support and examples for their position [...]. We wrap up the discussion with reflection.
Again, temporarily blinded to other responses, each student makes a final contribution to their
group’s collection of posts by contributing a short summary of what was learned in the benchmark
lesson.

The advantages and disadvantages of benchmark lessons are discussed by the authors:

On-line collaboration gives each student the opportunity to voice their opinions and participate
[...]. In the virtual environment everyone has a chance and the environment feels less confrontational
[...]. High—ability students may benefit from explaining ideas to low—ability students, gaining
the intellectual benefit from teaching [...]. Low—ability students may benefit from having peers
explain concepts in terms closer to their own understanding [...]. Virtual benchmarks are valuable
to the instructor. Because discussion proceeds openly without judgment, teachers are able to
get a deeper idea of what is and is not understood by the class as a whole [...]. With every
student participating in many ways and at many levels, it is very difficult for an instructor to give
each response the careful and thorough attention it deserves [...]. Another problem of the virtual
benchmark is that there is no way to ensure that each student reads all the other postings in the group.

8 These intentions are in contrast to the more open usenet newsgroups.

78 Tootsie Tutorial System [Section 4.3]

As mentioned above the benchmark lessons encompass many benefits which asynchronous communication
offers in the work with discussion boards. The strict structure of benchmark lessons is especially impor-
tant if bigger groups of students are participating. [SCHAFFNER ET AL., 1996] recommend restricting the
number of users to 8 or 10 by splitting up a discussion board into smaller ones. The experiments carried
out by the authors showed how well benchmark lessons were received by the students. “Researches have
shown that discussion methods keep students active and involved with their learning. Ideally benchmark
lessons follow diagnosis and are chosen based on the prevalence and severity of novice facets in a
classroom; however, benchmark lessons (in—class or on-line) are likely to be beneficial to any audience,
even when divorced from diagnosis (p32).” In my opinion it may be precarious to abolish diagnosis that
tries to find out the students’ novice facets on which the design of benchmark lessons should be based.
[SCHAFFNER ET AL., 1996] earlier say in their paper that effective instruction should identify students’
pre—existing and context specific pieces of knowledge, build upon them and weave them into a coherent
whole (p5). Therefore a developer of a tutorial system should include a method which makes diagnosing
facets at the very beginning of the design process possible. Nevertheless, I emphasize that some of the
results, which are mentioned in [SCHAFFNER ET AL., 1996], are not universally applicable: the tested
user groups may not be representative, new teaching methods are often positivly considered at the
beginning but this effect may wear off, and the results may be influenced by the Hawthorne effect.

4.3.3 System Evaluation

Restrictions that arise from using JavaScript and Cookies, are explained in Section 3.5.4, so in this
section I present the results of a beta—test, which was done with a small tutorial system at Technische
Universitdt Miinchen in April 1997. The first trial version was not aimed at testing the educational
abilities, but examining the technical availability and usability of the system. I announced the test in one
of the computer science newsgroups at Technische Universitat Miinchen, and eight students anonymously
participated in a course consisting of four basic questions on Bayesian laws which were taken from the
DIANA tutorial by [SCHAFFNER ET AL., 1996]. The results are not scientifically relevant, because the
user group was very small and does not represent the student body of the university. In addition, the small
number of exercises and the missing difficulty levels prevent an educational analysis. The test offered one
exercise in form of a benchmark lesson, but the students did not participate. For the implementation I
used the German version of the tutorial system Tootsie, which did not have an entry questionnaire for
assigning the student to a user group that is distinguished by the difficulty and help levels. The system
was rated by answering an online questionnaire which could be filled out by the students at any time.
The Cookie values of each student could optionally be included, so I was able to see how often and
how successfully a student had worked on the course. The results were promising, but some previously
unknown problems arose. These are explained and solutions are suggested:

e “HTML and JavaScript code was displayed in the document window.”
This problem had not shown up in my previous tests, and I do not exactly know what happened.
I think the reason for this problem is based on the method by which a framed document is loaded
by the world—wide web browser: occasionally not just one frame must be updated, but two or more
at the same time. Presumably this is not properly done by the browser, because selecting reload
frame in the menu correctly works for each individual frame. I recommend restricting the use of
frames to situations where not more than one frame must be updated.

e “It was difficult to return to the start screen of the system.”
This is intended, because the start screen resets all the Cookie values, and therefore it should only
be accessed at the beginning of a session. The problem can nevertheless be fixed by putting a link
to the start screen in the table of contents.

e “The dialog box which asks whether or not the student would like repeat the exercise, was displayed
many times. I recommend using a neutral screen instead.”
I must emphasize that the course only consisted of four exercises, so this dialog box frequently
appeared. In a larger system this will rarely be the case. I can nevertheless offer a different solution:
the developer must introduce a new Cookie variable that records, for each exercise, whether or not
the student has answered the dialog box with “no”. Whenever a link to a next page is returned by

[Chapter 4] Implementation 79

a JavaScript function, a new procedure must be called which checks the Cookie variable, and in
case of a “no” entry the exercise wizard is loaded.

e “The used font is too small.”
A problem of world—wide web browsers is that their settings or ways of displaying a web page are
very different. Before cascading style sheets are wide—spread, world—wide web users must be asked
to select a new font in their preferences.

e “The start screen is not well organized, and buttons or links are not explained.”
The idea of separating the start screen from the other pages — currently the table of contents, the
menu, and the help frame are immediately displayed after the system was loaded — will be adopted
in future releases. For explanations of buttons and links, the status line of the browser can be used,
so the system developer must modify the C source and template files of the Tootsie Development
System.

e “Tootsie did not work with Microsoft’s Internet Explorer 3.02.”
For Microsoft’s Internet Explorer 3.x the use of frames is not recommended, because documents
cannot be loaded into a frame different from the one where the update request was issued. The sys-
tem developer must therefore consider whether or not it is possible to work with a single document
window.

The remaining questions of the questionnaire were answered by the students in the marking scheme of

the university: the lower the average mark is, the better the topic was rated. The results are presented
in table 4.1.

Table 4.1: Results of the Tootsie Tutorial System Evaluation in April 1997

Student
Topic A B C D E F G H Avg
Fun in Working with Tootsie || 2 3 3 2 2 3 4 n/a | 2.7
Own Educational Progress 5 5 2 2 n/a |5 5 n/a | 4.0
Usability of Tootsie 2 3 2 2 1 4 4 n/a | 2.6
Benefit of Group Work Area || n/a | 2 2 3 5 n/a | n/a | 2 2.8

Chapter

Conclusion and Qutlook

This thesis introduced the fundamentals of tutorial systems by discussing the psychological background,
the various types of educational software, and the prototypal implementation of a sample system.
Its primary goal was the comparison and the presentation of techniques which combine tutorial
systems and the world—wide web to a learning environment that is both universally accessible and
individually adaptable. Based on the previous chapters I can conclude that the future prospects of
distance learning are good: plug—ins and Java applets offer real interaction between student and system,
external programs are integrated with the help of CGI (or the CL-HTTP server respectively), and
HTML 4.0 and JavaScript provide new ways of structuring documents and monitoring the students’
activities in formerly static HTML forms. The advantages of a world—wide web based course are
the availability and the independence of the system. Students can access tutorial systems without
general restrictions of time or location, so a learning environment is created which is focused on the
learners’ needs, and not on organisational preliminaries. In this respect the underlying world—wide
web technology is less important than the pedagogical concepts. Most of the resources reserved
for the system design should therefore be invested in establishing an exploratory and motivational
environment which challenges the users and supports them according to the integrated didactic principles.

This thesis was also aimed to provide an overview of the current research of tutorial systems. The combi-
nation of the subjects Psychology and Computer Science is manifested by the proposed implementation
for knowledge representation, feedback, adaption, and the structural organisation of tutorial system com-
ponents. Future software will strengthen these ties: as research of artificial intelligence and computational
linguistics' proceeds previous modelling problems, like true understanding of the students’ actions, may
be solved. Practical solutions for the “use of the button”, the organisation of course documents, adaption,
and a cooperative work environment can be found in Sections 4.2 and 4.3. Some of these proposals have
already successfully been applied to various tutorial systems, so their integration in existing or new
educational programs should be considered. In the future distance learning will play an essential role
in adult training as the various research projects, like Lecture 2000? or Deutsche Telekom’s T-Mart?,
show. However, tutorial systems cannot fully replace human communication: firstly, social interaction
is often essential for learners (see Section 4.3.2), and secondly, current tutor and student models are
still inadequate to react specifically on the individual problems which hinder successful learning. In its
current form distance learning is therefore a supplement to traditional training rather than an alternative.

Ideas which use the different world—wide web technologies to implement a tutorial system are presented in
Section 3.7. However, with their help it is hardly possible to compensate deficiencies of the user interface
of the underlying browser application. For a world—wide web based tutorial system two features, which
current browsers do not provide, would be extremely useful:

e Magic marker
If students read documents which are printed on paper they often mark passages, which are impor-
tant for them, with a magic marker and write annotations beside the text segments. This technique
could easily be implemented in world—wide web browsers: text is highlighted by the users and an-
notated with the help of an external text editor. Whenever the users return to the same page,

L For example, see http://www.cis.uni-muenchen.de/.

2 see http: //wwwschlichter.informatik.tu—-muenchen.de/proj/lecture/.
3 see http://www.t-mart.com/.

80

[Chapter 5] Conclusion and Outlook 81

which is uniquely characterised by its URL, the text segments are automatically highlighted and
the entered information is displayed if the students click on the marked passages. The annotations
and the locations of highlighted text could be stored on the users’ hard disk.

e Storing of contents
Currently, if world—wide web users save HTML documents on their hard disks, the embedded
objects, like images, will unfortunately not be downloaded. The possibility of storing the contents
of a web page automatically could be implemented by transfering the objects to a local directory
and by replacing the links of the remote objects, which are inside the HTML document, with links
to the new file names.

The prototypal implementation of Tootsie provided an insight into the possibilites and restrictions of
tutorial systems on the world—wide web and JavaScript in particular. I presented arguments for and
against JavaScript, introduced a development system for creating exercises as easily as possible, and
examined various enhancements, like the exercise wizard and the cooperative work environment, of the
traditional drill-and—practice approach of the tutorial system. An evaluation, which was held in April
1997, showed how students accepted the design of my computer—based training program. The following
enumeration discusses limitations of my solution and presents implementational alternatives:

e For creating exercises and HTML documents the development system was introduced to prevent
superficial errors being made by system developers, which for example frequently occur when code
sections are manually copied. The exercise templates however, which define a general layout pattern
for an exercise, restrict the flexibility of the final system by excluding more individual course
documents. This problem can either be solved with the integration of new templates or with manual
modifications of the resulting HTML files.

e The cooperative work environment allows students to interact with each other, for example by
discussing a benchmark lesson. The current tools are not fully operational: the programs do not
support locking of files, so whenever two processes simultaneously access the same file an error
message will be returned. The relevant components can easily be replaced, so for example a “chat”
program which is based on the programming language Java could be used instead.

e The system code is solely implemented in JavaScript which allows the quick integration of individual
system functions. This suits the indended use of the system as a drill-and—practice program with
basic extensions for student adaption. For more advanced training software however, a JavaScript
implementation would be better replaced by Java or (partly!) CGI programs. These allow more
extensive student monitoring, bigger systems, and the “separation of concerns”.

e The user interface of a tutorial system is supposed to relieve the work—load of the students’ working
memory, so a well structured and intuitive design is recommended. The current implementation is
only used for test purposes, and should therefore be changed.

This thesis aimed to provide an overview of technologies which are available for a broad user group.
Therefore, it does not, describe methods which are rarely used (like the virtual reality modelling language
VRML), still in the making (for example, the extensible markup language XML), or platform—specific
(like Microsoft’s ActiveX). These techniques should nevertheless be considered if a tutorial system is
designed as they often provide possibilities which other technologies do not offer.

82

Appendix

The following resource variables are needed to localize the Tootsie development system. For example,
they specify in which directories files are stored, which tokens introduce important code sections, and
which error messages are returned to the user. The letters C, G, L, M, S, T, and V, which are described in
Appendix B.1.1, represent the various resource files .rsc, in which the variables are defined. These files

Appendix

Resource Variables

are used by the CGI programs of the Tootsie development system.

Table A.1: Resource Variables of the Tootsie Development System.

Resource Variable

Usage

Comments

APPLET DIRECTORY

BASE

BASE_HREF

CONTENT_ENDMARKER

CONTENT_FILE

CONTENT_MARKER

COOKIE

DEFAULT HELP_TEXT

DEFAULT HELP_TITLE
ENTRY_SYNTAX_ERROR

EXERCISE_TYPE

EXERCISE_TYPE_TEXT

EXERCISE_WIZARD FILE

FILE_END

-G-MSTV

---MSTV

CGLMSTV

C-LMSTV

C-LMSTV

C-LMSTV

---MS-V

---MS-V

---MS-V
C-L----

---MSTV

The world-wide web directory, i.e. URL path, which
contains all the Java applets for the tutorial system.
Token in the template file that is replaced with the
contents of BASE_HREF.

The world-wide web root directory, i.e. URL path,
where all the exercises of the tutorial system are
stored.

String or character which ends the overview list of
exercise sections.

Development system file in which information on the
exercise sections is stored.

String which starts the overview list of exercise sec-
tions in the file CONTENT_FILE.

A token which is replaced with the position of the
Cookie character in the Cookie string, that is used
for the current exercise.

The default help text which is used for a help file if
no other text is defined by the author.

Default title of a help file.

Error message which is displayed on screen if wrong
data has been entered into the current form.

A two—letter code which denotes the type of an ex-
ercise. It is used by various programs and files of the
development system.

A description for the two—letter code EXERCISE_TYPE
which is required in the overview table of exercises.
The location and name of the exercise wizard file.
Text, which is returned to the author if a program of
the development system has successfully processed
the form input.

85

86

Resource Variable

Comments

GLOBAL_ENDMARKER

GLOBAL_MARKER

GLOSSARDIRECTORY

GLOSSAR_END

GLOSSAR_INDEX_ENDMARKER

GLOSSAR_INDEX_FILE

GLOSSAR_INDEX_MARKER

GLOSSAR_SEPARATOR

GLOSSAR_SYNTAX_ERROR

GLOSSAR_TEMPLATE

HELP

HELP_DECR

HELP_FILENAME

HELP_INCR

HELP_SYNTAX_ERROR

HELP_TEMPLATE
HELP_TEXT

HELP_TITLE

HINT_ENDMARKER

HINT_MARKER

-G-MSTV

---MSTV

---MSTV

---MS-V

---MS-V

---MS-V
---MS-V

---MS-V

String or character that ends the section of an exer-
cise file, in which the global variables are defined.
String or character that starts the section of an ex-
ercise file, in which the global variables are defined.
The directory in which all the glossary definitions are
stored.

Text, which is returned to the author if a glossary file
has been successfully written on disk.

String or character which ends the overview list of
glossary definitions in the file GLOSSAR_INDEX FILE.
File name, including path, in which the overview list
of glossary definitions is stored.

String or character which marks the start of the
overview list of glossary definitions.

Glossary keywords which are used in an exercise text
must be specifically entered by the author, so links to
the glossary files are automatically set by the devel-
opment system. Consequently, GLOSSAR_SEPARATOR
defines the character which separates the different
keywords.

Error message which is displayed if a syntax error
has been found in a glossary file.

File name, including path, of the glossary template
file.

Token which is replaced by the development system
with the help file path for the current exercise.
Token which is replaced with the filename of a help
file that has a lower help level than the current one.
This resource variable is currently not used. In fu-
ture releases it will specify the filename of a help file,
which is by default assigned to a help level whenever
a help text is not entered by the system developer for
this particular level. To activate the resource variable
the file exfunc.c must be edited.

Token which is replaced with the filename of a help
file that has a higher help level than the current one.
Error message which is displayed whenever the input
of the help entry box is incorrect.

Path and filename of the template file for help pages.
Token which is replaced with the help text by the
development system.

Token which denotes the position of the title string
in a help file.

String or character that ends the section which con-
tains the feedback text. This text is displayed to the
user whenever the previous exercise has been suc-
cessfully solved.

String or character that starts the section which con-
tains the feedback text.

[Appendix A] Resource Variables

87

Resource Variable

Usage

Comments

IMAGE DIRECTORY

INDEX_FILE

INDEX_ENDMARKER

INDEX_MARKER

INFO_ENDMARKER

INFO_MARKER

LINKS_DIRECTORY

LINKS_INDEX_ENDMARKER

LINKS_INDEX FI1E

LINKS_INDEX_MARKER

LINKS_TEMPLATE
LOGIC_END

LOGIC_START

MULTIPLE_CHOICE

NO_CONTENT_ENTRY

NO_CONTENT_FILE

NO_CONTENT_MARKER

NO_ENDMARKER

-G-MSTV

-GLMSTV

-GLMSTV

The world-wide web directory, i.e. URL path, that
contains all the images which are used by the tutorial
system.

The location and filename of the overview list, in
which all the relevent information on linked tutorial
systems exercises is stored.

Generally it defines the end delimiter for the
overview list of created exercises. For the link pro-
gram, however, it symbolises the end of the section,
which contains the link information.

Generally it defines the start delimiter for the
overview list of created exercises. For the link pro-
gram, however, it symbolises the start of the section,
which contains the link information.

It marks the end of the code section in an exercise
file where links to succeeding exercises are stored.

It marks the start of the code section in an exercise
file where links to succeeding exercises are stored.

It defines the root directory in which the created ex-
ercises will be stored (the path must be similar to
the world—wide web directory BASE_HREF).

It marks the end of the overview table for created
exercises.

Location and filename, in which the overview table
for created exercises is stored.

It marks the start of the overview table for created
exercises.

Location and filename of the exercise template.
This marker is placed into the exercise template but
required by the linking program. It defines the end of
code section, which is executed when the user selects
Continue....

It defines the starting point of the code section, which
is executed when the user selects Continue.. ..
The user interface of the development system does
not use the common abbreviation mc for multiple—
choice questions, but shows a more intuitive expres-
sion instead. Therefore, for the link program the
string MULTIPLE CHOICE specifies which term stands
for mc.

Error message which will be displayed if the list of
exercise sections is not found or if an erroneous entry
is read.

Error message which will be displayed if the file with
list of exercise sections is not found.

Error message which will be displayed if the start
delimiter for the list of exercise sections is not found.
Error message which will be displayed if the end de-
limiter of a list is not found.

88

Resource Variable

Usage

Comments

NO_EXERCISE

NO_EXERCISE WIZARD_FILE

NO_GLOSSAR

NO_GLOSSAR_INDEX

NO_GLOSSAR_LINE

NO_GLOSSAR_MARKER

NO_HELP_FILE

NO_HELP_LEVEL

NO_HELP_TEMPLATE

NO_INDEX

NO_LINKS_INDEX

NO_MARKER

NO_TEMPLATE

NO_TOOTSIE_CONTENT

SINGLE_CHOICE

SOLUTION

SUBTEXT

SUBTEXT_ENDING

SUBTEXT_HEADER

SUBTEXT_NUMBER

SUBTEXT_SOLUTION

--LMSTV

---MSTV

---MSTV

---MS-V

---MS-V

---MS-V

-GLMSTV

---MS-V

---MS-V

---MS-V

---MS-V

---MS-V

Error message which will be displayed if the exercise
file is not written on disk.

Error message which will be displayed if the file
EXERCISE WIZARD FILE cannot be opened by the
system.

Error message which will be displayed if the glossary
file is not written on disk.

Error message which will be displayed if the file con-
taining the overview list of glossary keywords is not
found.

Error message which will be displayed if an error in
the file with the overview list of glossary keywords is
found.

Error message which will be displayed if a delim-
iter for the overview list of glossary keywords is not
found.

Error message which will be displayed if a help file
is not written on disk.

Error message which will be displayed if the author
does not specify a help level in the entry field for help
texts.

Error message which will be displayed if the template
file for help pages is not found or cannot be opened.
General error message which will be displayed if an
overview file cannot be found.

Error message which will be displayed if the file con-
taining the overview list of the created exercises is
not found.

Error message which will be displayed if a delimiter
of a overview list is not found.

Error message which will be displayed if the file con-
taining the exercise template is not found.

Error message which will be displayed if the content
file cannot be written on disk.

Similar to MULTIPLE_CHOICE, but used for single-
choice questions instead.

This marker, which is used in an exercise template,
defines the start of the code section where the solu-
tions to the current questions are stored.

This marker, which is used in an exercise template,
defines the start of the code section which is respon-
sible to display the exercise questions.

Source code which must follow after the code section
which is responsible to display the exercise questions.
Source code which must precede the code section
where the exercise questions are written.

Code portion which displays a numberic counter for
questions.

Code portion which encapsulates the form element
of a question, which can be selected by the student.

[Appendix A] Resource Variables

89

Resource Variable

Usage

Comments

SUBTEXT_SOLUTION_TYPE

SUBTEXT_TEXT

TEXT

TITLE_SEPARATOR

TITLE

TOOTSIE_CONTENT

TOOTSIE_CONTENT_ENDMARKER

TOOTSIE_CONTENT_MARKER

TOOTSIE_HOME

TOOTSIE_TEXT_ENDMARKER

TOOTSIE_TEXT_MARKER

VARIOUS_ANSWERS

WORD

-—-MS-V

---MS-V

-G-MSTV

---MSTV

-G-—-——--

Code portion which displays the form element, which
can be selected by the student.

Code portion which encapsulates the text that is
asked in a question.

Token which is replaced with the introductory text
of an exercise or glossary entry by the development
system.

Like GLOSSAR_SEPARATOR it specifies a character
which separates each element of the title string. The
last part is used to generate the filename of an ex-
ercise, while the others are needed to create suitable
subdirectories.

Token which is replaced with the title of an exercise
or glossary entry.

Filename, including path, of the table of contents of
the tutorial system.

String or character which ends the code section that
defines the structure of the table of contents.

String or character which starts the code section that
defines the structure of the table of contents.

Home directory of the Tootsie development and tu-
torial system.

String or character which ends the code section that
is responsible for displaying the table of contents.
String or character which starts the code section that
is responsible for displaying the table of contents.
Similar to MULTIPLE_CHOICE, but used for various—
answer questions instead.

Token which is replaced with the glossary keyword.

Tootsie is a suite of C and HTML files. The program files, which are required to create exercises, must
be compiled with an ANSI C compiler, before their executables can be copied to a directory of the
world-wide web server which is reserved for CGI programs. The HTML files either define the user

Appendix

Tutorial System Source Files

interface of the development system or the work environment of the tutorial system.

B.1 Tootsie Development System

B.1.1 Common Gateway Interface Source Files

The abbreviation RF stands for resource file, so each letter which is used in the RF field represents a
file that defines resource variables of the Tootsie development system. These variables are described in
Appendix A. If the RF column contains one or more letters, the specified resource files will be read by

the executables created from the compiled program code.

Source File

Table B.1: CGI Source Files of the Tootsie Development System.

RF

Comments

chat.c

content.c

exfunc.c

exfunc.h

exmain.c

exmain.h

90

=H+Hwn=

The chat program is part of the cooperative work tools. It uses two text
files, which are defined in the header of the source code, to generate the
output of the chat. Whenever a participant says something, i.e. output
must be written, the changes are first made in a backup file, which will
replace the standard output file then.

This program file is responsible to write the table of contents for a tuto-
rial system as it is specified by the author. Localized data is read from
the resource file tdevco.rsc (C).

It contains the subroutines which are called by exmain.c whenever an
exercise file is generated.

It defines the object structures and procedure signatures that are re-
quired by exmain.c.

The main program, which generates exercise files, calls the subroutines of
exfunc.c in order to parse the developer’s entries in the exercise forms.
It also defines the names of the resource variables and reserves memory
space for them. Localized data is read from the resource files tdevmu.rsc
(M), tdevsi.rsc (S), tdevti.rsc (T) and tdevva.rsc (V).

The header file of exmain.c contains preprocessor data and provides
access to the internal representations of the resource variables.

[Appendix B] Tutorial System Source Files

91

Source File

RF Comments

glossar.c

linking.c

mailme.

C

Makefile

news.c

*.rsc

G

The program is responsible to write a glossary file according to the au-
thor’s input in the glossary definition form. Localized data is read from
the resource file tdevgl.rsc (G).

The program connects the different exercise files with hypertext links as
specified in the input fields of its world—wide web form. Localized data
is read from the resource file tdevli.rsc (L).

The program enables users to give feedback in form of a questionaire
during the beta—test of the system.

A standard makefile for compiling the executables from the source code.
As part of the cooperative work tools the program implements a basic
news group for the course. Localized data is read from the resource file
abnews.rsc.

Resource files which set the environment variables of the Tootsie devel-
opment system. These variables are used to localize the Tootsie devel-
opment and tutorial system.

B.1.2 User Interface and System Files

Table B.2: User Interface and System Files of the Tootsie Development System.

System File

Comments

tdevi10.

tdevil

tdevi2

tdev20

tdev21

tdev25
tdev28
tdev30

tdev3l

tdev40

tdev4l
tdevb0

htm

.htm

.htm

.htm

.htm
tdev24.

htm

.htm
.htm
.htm

.htm

.htm

.htm
.htm

to

to

The file is the start page of the Tootsie development system. Two independent
sections of the browser window, which are called frames, are build up and the
files tdevil.htm and tdev12.htm are loaded into these.

It stores the table of contents of the development system. In order to create
exercises etc. for a tutorial system the developer should follow each link from
top to bottom.

This page gives information about the current version of the development
system.

An overview page with detailed instructions on how to create exercises for the
tutorial system. It also contains further links to the individual input forms of
the different exercise types.

Basically a single HTML file for displaying two browser frames. The first one
is used for the various input forms, whereas the other one shows the overview
table of created exercises, which are stored in tdevex.htm.

These contain the input forms for the different exercise types.

Two frames are defined by tdev30.htm. One shows an input form for glossary
keywords, the other one the overview table of existing glossary entries, which
is stored in tdevgl.htm.

It displays an input form for glossary keywords.

Two frames are defined in order to display the files tdev41.htm and
tdevex.htm.

This input form must be used to connect exercises with hypertext links.
Firstly the overview table of existing hypertext links, which is stored in file
tdevlk.htm, is displayed. Secondly, the file tdevex.htm is loaded to enable
system developers to access exercises and check their appearnace by selecting
the View link.

92 Tootsie Tutorial System [Section B.2]

System file Comments

tdev60.htm Two frames are defined in order to display the two files tdev61.htm and
tdevsc.htm that are necessary to generate the table of contents for a tuto-
rial system. The first frame contains the input form, whereas the second one
shows the overview table of existing exercise sections.

tdev61l.htm The input form for creating a table of contents.

tdev70.htm As the tutorial system is using Cookies to store information on the student’s
progress, it is necessary to give the students access to the Cookie values. The
file tdev70.htm shows an overview of all possibilities that exist in order to
modify Cookies.

tdev71.htm to These HTML pages enable students to change Cookie data.
tdev73.htm
tdev80.htm Generally, if the developer clicks on help, a JavaScript procedure is called to find

out, what input form or HTML page is currently displayed in the world—wide
web browser. However, if this does not work, i.e. the help link is case—insensitive,
the file tdev80.htm is loaded instead.

tdev81.htm to These files contain the help pages for the development system. If the help link

tdev89.htm is case—sensitive, one of these files will be shown immediately, otherwise the
developer must select them from tdev80.htm.

tdevex.htm It stores the overview table of created exercises whose entries consist of a title,
HTML filename, difficulty level, and exercise type.

tdevgl.htm It stores the overview table of glossary terms whose entries consist of a glossary
keyword, HTML filename, and title.

tdevlk.htm It stores the overview table of existing hypertext links whose entries consist of
the title of the source file and the titles of the succeeding exercises.

tdevsc.htm It stores the overview table of exercise sections whose entries consist of a title for

each section, a path portion which is relative to the root directory, the difficulty
levels, and the Cookie index which is either increased for each marked section
or 0 otherwise.

tdev?t.htm Files with the pattern tdev?t.htm are generally used for exercise templates.
Templates can be edited by the developer and represent the layout of an exer-
cise. Whenever the developer creates an exercise by filling out the appropriate
HTML form, the tokens of the template are replaced by the contents of that
form. For this operation the token names must be defined in the resource files.

B.2 Tootsie Tutorial System

B.2.1 User Interface and Work Files

Table B.3: User Interface and Work Files of the Tootsie Tutorial System.

Work File Comments

abchat?.htm These files are used by the chat program, a tool that is designed to offer a
synchronous cooperative work environment.

abemail.htm It is recommended to list the email addresses of all the people who are currently
involved in the design of a course in this file.

abfirst.htm The file abfirst.htmis an on—line assistant, called exercise wizard, which sug-
gests or recommends exercises which the student should do next. It is displayed
whenever a registered student clicks on start in the welcome page abwillk.htm
or selects “exercise wizard” from the menu.

[Appendix B] Tutorial System Source Files 93

Work File Comments

abfrage.htm It contains a questionaire for evaluating the tutorial system. The student who
answers the questions does not have to enter an email address, so he can choose
whether the mail is sent anonymously or not.

abframe.htm The start page of the tutorial system. It defines four frames within the browser
window: “lightgrey” is reserved for the table of contents, “darkgrey” for help
texts and glossary terms, “black” for menu items and “white” for exercises.

abgloss.htm If abframe.htm is loaded it will also display abgloss.htm which contains an
introductory text for the “darkgrey” frame .

abhilfe.htm It contains a case—insensitive help page which is displayed if the file in the white
frame is not recognized by the JavaScript function, which is called when the
help link is selected by the student.

abinhal.htm It contains the table of contents of the tutorial system. Modifications should
only be made by using the Tootsie development system.

abmenue.htm It displayes the menu items of the tutorial system.

abnewus.htm A new student must sign—in first before he can use the tutorial system. However,
he is not only asked to enter his name, but also to answer a few questions in
order to derive his current knowledge state. For each ticked box the user gets
a certain amount of points as defined in the variable level. The final result
is divided by the maximum amount of points and the difficulty level for the
following exercises is set accordingly.

abwillk.htm It contains the first page of the tutorial system. Basically it is responsible to
reset the Cookie values for a new session.

hi*.htm These files contain the case—sensitive help text of the tutorial system.

nw*.htm These files are used by the newsgroup program. The file nwdummy . htm is needed
to force the browser to display the news input form after the list of posted
messages has been loaded.

B.2.2 Add-On

Add-ons are programs which are not essential for the operation of the tutorial system itself, however they
can support the student in problem solving. For example, if a pocket calculator is integrated into the tu-
torial system, the student will not have to leave the work area, so consequently distractions can be avoided.

Table B.4: Add—On Files of the Tootsie Tutorial System.

Add-On File Comments

stdvert.htm A sample tool that allows the students to look up the values of the standard
distribution.

taschre.htm A sample pocket calculator with the arithmetic functions +, —, *, and \.

Appendix

Example for Creating an Exercise

The following example shows the various steps which are required for generating an exercise with the
Tootsie development system. For a detailed description of the input forms and their elements see Chapter
4.2, however it is recommended to start the development system and try the examples.

C.1 Generate Glossary

1. Keyword: Diana

The keyword Diana is automatically referenced in an exercise text if it is delimited by white—space
characters. As a consequence a hypertext link will not be set for a keyword which is followed
by punctuation character like “.”, “,” etc. The filename of a keyword consists of the following
components: g for “glossary”, the first four letters of the keyword, and a three digit number (for
example, gdian000.htm).

2. Title: Diana Tutorial System
3. Explanation
The last input box is used to describe the aforementioned keyword. The text must be structured
by HTML commands.
<P ALIGN=LEFT>
<A HREF="http://bayes.stat.washington.edu/diagnoser/diagnoser.html"
TARGET="_top">Diagnostic Instructional Aid for Noetic Advancement
</P>
After clicking on Generate... the glossary file is written, and the keyword is listed in the overview
table.

C.2 Generate Exercise

The following example is based on the form “single—correct multiple—choice—question”.

1. Title: Bayes, 1. Question

94

From the section name Bayes a subdirectory bayes is created in which the exercise group 1.
Question is stored. The filenames of an exercise group consist of the following components: a
for “exercise”, the first six letters of the group name (excluding white—space and punctuation
characters), and the difficulty level (for example, alquestl.htm).

[Appendix C] Example for Creating an Exercise 95

2. Glossary keywords: Diana
Glossary keywords are entered in form of a comma-—separated list which specifies the terms that
the development system must look for in the exercise text. If these terms are found, hypertext
links will automatically be set to the files containing the glossary definitions.

3. Help text
The format for entering help texts is #<levels>#<text>. If the input box is left empty by the
system developer, a help button will not be displayed in the current exercise.

#1#

<P ALIGN=LEFT>This is the help text for help level 1.</P>

#23#

<P ALIGN=LEFT>This is the help text for help levels 2 and 3.</P>
#5#

<P ALIGN=LEFT>This is the help text for help level 5.</P>

For help level 4 a help text is not defined, so instead a default text, which must be set in the
resource file, is used. The help filenames consist of the following components: h for “help”, the first
six letters of the exercise group name, and the help level (for example, hiquest1.htm). This also
means that for every page of an exercise group the same help texts must be entered as otherwise
the existing help files will be overwritten (please note that help texts are defined for an exercise
group, but not for a single exercise).

4. Exercise text
An exercise text, which is structured with the help of HTML commands, must be entered. If the
aforementioned glossary keyword Diana appears inside the text, a hypertext link will automatically
be set to the appropriate glossary file.

5. Answers
Up to five answers can be entered from which the student will have to select one. The correct
answer must be ticked by the system developer.

6. Difficulty level: 1 (trivial)

7. Marked: yes
Marked exercises are stored in the Cookie variables and can be controlled by the tutorial system.
Typical examples are:

e tootsie_info, for example: acbd

Each exercise group is represented by a single letter, whose character value encodes which
difficulty levels of an exercise group are correctly solved by the student. If a learner accesses
the tutorial system for the first time, the letters of the marked exercise groups are set to a.
Whenever an exercise is solved from that moment on, its difficulty level specifies which bit of
a binary word of five bits is set to 1. The word and the binary value of the current letter are
connected by the logical connective or, and the result is again stored in the Cookie variable
tootsie_info. According to the example the difficulty levels 1 and 2 of the exercise group 2,
i.e. ¢, are correctly solved by the student.

e tootsie nexe, for example: aceabccdaa
A block of five letters represents one exercise group, where each difficulty level of the group,
i.e. a single exercise, is symbolised by one letter. At the beginning of a course all letters are set
to the default value a. Whenever the user accesses an exercise, the binary value of the letter is
increased by one and again stored in tootsie nexe. According to the example, from exercise
group 1, i.e. aceab, the exercise with the difficulty level 2, i.e. c, was accessed three times,
while the exercise with difficulty level 5, i.e. b, was only once loaded by the student.

96 Generate Links [Section C.3]

After clicking on Generate. . . the exercise file is created and listed in the overview table of saved exercises.

C.3 Generate Links

Hypertext links must be set between exercises, so students can access the course pages. In this respect
the overview table of saved exercises is used to copy exercise data into an internal clipboard by selecting
a Copy link. This data is written into the entry fields whenever the system developers click on a command
button.

1. Exercise
After the system developer has selected the Copy link of the exercise Bayes, 1. Question!, whose
difficulty level is denoted by the superscript 1, and clicked on Page, the text entry field contains
the following data: Bayes, 1. Question (single-correct, bayes/alquestl.htm).

2. Rules
The link rules specify which exercise is loaded next after the student has clicked on the Continue. ..
button of the current exercise. Before a command button can be used the Copy link of an exercise
must be selected, so the relevant data is stored in the internal clipboard of the development system.
Only the buttons Page and Group set links to exercises, so each code section must end with a 1ink
command, as in the following example:

if (correct)
link(bayes/allques);

else if (item[2])
link(bayes/allques3.htm) ;

else

{
reset (bayes/allques3.htm) ;
link(bayes/allques3.htm) ;

}

If the student solves the current exercise Bayes, 1. Question a page from the exercise group
bayes/allques is loaded, where the exact file depends on the current difficulty level. If the third
answer is selected — the index numbers for item start with 0 — the page bayes/aliques3.htmis
presented to the learner. Otherwise the Cookie value of exercise bayes/allques3.htm is set from
“correctly solved” to “not done yet” followed by a link to exercise bayes/aliques3.htm.

3. Comments
The format for entering comments and feedback, which are displayed on consecutive pages of
the current exercise, is: #link(<filename>) ;#<text>. The Page button is again responsible for
placing a 1ink between the # delimiters as the following example shows:

#link(bayes/alquest5.htm) ;#

Comment displayed on page "Bayes, 1. Question (level 5)" if the current
exercise is correctly solved.

#link(bayes/allques3.htm) ; #

Comment displayed on page "Bayes, 1.1. Question (level 3)" if the
current exercise is correctly solved.

The comments are not source—specific, so they are displayed whenever the previous exercise was
correctly solved. Please note that this feedback method cannot be applied for exercises in which
a wrong answer was given by the students. In this case “hints—and—feedback” exercises should be
used instead.

Clicking on Generate. .. changes the specified exercise files.

[Appendix C] Example for Creating an Exercise 97

C.4 Generate Table of Contents

The input form shows a single text entry box in which the structure of the table of contents can be
entered in form of HTML commands. Content entries are added by selecting the Copy link of a listed
exercise group and clicking on the Page command button. Example:

<P ALIGN=LEFT>The Bayesian Laws</P>
link(bayes/alquest);

link(bayes/allques);

<P ALIGN=LEFT>End</P>

In the resulting table of contents the 1ink lines are replaced by a radio button and an abbreviated group
name of the specified exercise group.

Appendix

Glossary

ACT
Adaptive control of thought.

API
Application programming interface.

AWT
Abstract windowing toolkit.

behaviorism
“[...] a movement in psychology that advocates the use of strict experimental procedures
to study observable behavior (or responses) in relation to the environment (or stimuli)
([SOFTKEY INTERATIONAL, 1996])”.

CGl

Common gateway interface.

CL-HTTP
Common Lisp hypertext transfer protocol.

CLIM
Common Lisp interface manager.

CLOS

Common Lisp object system.

constructivism
Knowledge is not a representation of an external reality, but the result of perception. Constructivism
emphasizes the active interpretation of objects by the student, and the meaningful construction
of knowledge by learning—by—doing and criticism than by listening (see [SCHULMEISTER, 1997],

pp73/74).

CORBA
Common object request broker architecture.

CSS
Cascading style sheets.

DIANA
Diagnostic instructional aid for Noetic advancement.

ELM-ART
Episodic learner model adaptive remote tutor.

epistemology
“[...] the study or a theory of the nature and grounds of knowledge esp. with reference to its limits
and validity ([SOFTKEY INTERATIONAL, 1996])”.

GUI
Graphical user interface.

98

[Appendix D] Glossary 99

hermeneutical
“[...] interpretative ([SOFTKEY INTERATIONAL, 1996])”.

HTML
Hypertext mark—up language.

HTTP
Hypertext transfer protocol.

JDBC
Java database connectivity.

MIME
Multipurpose internet mail extension.

M.L.T.
Massachusetts Institute of Technology.

OLE
Object linking and embedding.

POP
here: PUSH operational prototype.

PUSH
Plan and user sensitive help.

reification
The process or result of regarding something abstract as a material or concrete thing (see
[SOFTKEY INTERATIONAL, 1996]).

SDP
System Development, Process.

serendipity
“[...] the faculty or phenomenon of finding valuable or agreeable things not sought for
([SOFTKEY INTERATIONAL, 1996])”.

SQL

Systematic query language.

URL
Universal resource location.

W3C
World—wide web consortium.

W3P
World—wide web presentation system.

WWwWWwW
World—wide web.

Appendix

Figures

These two figures are actual screenshots of the Tootsie development system and a sample tutorial system.
The latter is similar to the implementation mentioned in Section 4.3.3. Both screenshots were taken from
Netscape Navigator 3.04 running on a Hewlett—Packard Series 700 workstation under HP-UX B.10.20,
so the layout of the system depends on the used system configuration and world—wide web browser
version. They may differ from other platforms.

In general, the layout and the user interface of the Tootsie system components are similarly designed, so
all the available forms and exercise screens, which are described in Sections 4.2 and 4.3 in detail, are not
presented.

100

[Appendix E] Figures 101

Metscope: Tootsie Development Tools

Tahle Of Crenerate Links £
Contents

—— 1 Please enter an exercise page informatdon by selecting the page in the
Genetate Glossary exercises overview frame (C) and clicking on "Page".

Generate Exercizes

Generate Links IEBayes, 1. Question (single-correct, bayesfalg
Lick Wiewrer
Generate TOC
age
Help
Copryright 2 Please enter the nules for linking the pages. You must use the command

burtons when necessary. Do not forget to select an exercise in the exercise
overviesw frame (C) before. Every code block must end with a link to an
EXErcise or eXercise group.

if (correct)
link (baves/alquest);
eglse 1if (ditem[2])
link(bayes/alquest3i.htm) ;
else reseti(baves/alquestl.htm);

= L

| Page ” Group ” Reset ” [sSet{Page) ” IsSetiGroup) |

| -> Group ” - Glossary ” -> Links |

Overview of Saved Exercises
Tl Type § Copy {
Bayes, 1. Questioni Single- Correct Multiple- Choice i Copy | View |
Bayes, 1. Question? Single- Correct Multiple- Choice : Copy . |

EO e

P View |

o= | = = |

Figure E.1: The exercises of a course must be linked together to form a coherent information space.
For that the Copy link of the overview table is especially important, because in conjunction with the
predefined command buttons the correct data is then filled into the entry fields. The example shows that
any JavaScript code can be entered into the “rules field”: if the student correctly solves the exercise
Bayes, 1. Question, a page from the exercise group bayes/alquest is loaded depending on the
current difficulty level. Otherwise, if the third answer is selected — the index numbers for item start
with 0 — the page bayes/alquest3.htm is next, or the Cookie for exercise bayes/alquestl.htm is
set from “correctly solved” to “not done yet”.

102

etscope: Tootsie, Tutoriol System korking Sheet

I suggest Bayes, 2. Question
[|
{Dlata iz bazed on coexent.
difficed ty Lewel 3
Difficul ty Lewel
bold suggested
ftaler successfully done I < I = HElp
pilierll e Here iz some information about the freshmean class at UW:
Bayes, 1. Question * 0% male.
successfodly done o 20% have a CBII. .
e 40% of those with a car drive to school.
O Baves. 2. Question e 40% are blonde.
AYES, o §0% are from the state of Washington.
. o 10% are from Oregon.
o 3% are from California. Wizgard
dane: { \ .
carrectiy solved: I If I pick a student at random, what is the chance thar he/she F
drives to school?
Isuggest: S+/H-
X
Taken feorn Diana srsteo.
Refrech I Qerit,
[|
Lazre TOC 1 B5% $
Short TOC
I 1
Lamzest 2 15% &
Fay
standard distribretion 3 42.5%
calcodator
I Confinue. ..
Diana

Tiana Tutarial Systern

Liagnosdc Instrucdeonal Aid for Moetde Advancement.

I =

|

Figure E.2: This single—correct single—choice exercise offers three possible answers to the student. By
clicking on Continue. .. the selected answer is processed, and the next page is loaded according to the
JavaScript source code which links the different course documents. The underlined “Diana” hypertext
link marks a glossary keyword, whose definition is displayed in the lower section of the browser window.
In addition, a help page for the current exercise is available because a Help button is shown in the
upper right corner of the white frame. The two buttons under “Difficulty Level” respectively decrease or
increase the difficulty level. This will however only effect the following exercises, provided that an exercise
for the selected difficulty level exists. The table of contents is set to annotated or I suggest, so the
tutorial system recommends exercises to the learner with the help of different font styles. These styles
can also be combined: for example, an exercise title written in bold and italic face denotes a page which
was once solved by the student, but wrongly answered in the following sessions. The system therefore
assumes that this exercise is especially difficult for the learner.

Bibliography 103
g

Bibliography

[ANDERSON, 1996]
Anderson J. R., Kognitive Psychologie, 2. Auflage.
Spektrum Akademischer Verlag, Heidelberg, 1996.

[ANDERSON ET AL., 1995]
Anderson J. R., Corbett A., Koedinger K., Pelletier R., Cognitive Tutors: Lessons Learned.
http://act.psy.cmu.edu/ACT /papers/Lessons_Learned—abs.html, 1995.

[ANDREWS, 1996]
Andrews K., HyperWave: The Next Generation Web Server.
http: //wksun2.wk.or.at:8000/0x811b9908_0x00251dce;sk=620A0EA1, 1996.

[ASTLEITNER, 1996]
Astleitner H., Lernen in Informationsnetzen.
Habilitationsschrift, Institut fiir Erziehungswissenschaften, Salzburg, 1996.

[ASYMETRIX, 1997]
Asymetrix Toolbook, Features of Asymetrix Toolbook.
http: //www.asymetrix.com/products/toolbook2/, 1997.

[BRUSILOVSKY & PESIN, 1996]
Brusilovsky P., Pesin L., ISIS-Tutor: An Intelligent Learning Environment for CDS/ISIS Users.
http://cs.joensuu.fi/“mtuki/www_clc.270296 /Brusilov.html, 1996.

[BURNS, 1997]
Burns J., So You Want to Layer, Huh?
http: //www.htmlgoodies.com/, 1997.

[DECEMBER COMMUNCIATONS, 1997]
December Communications Inc., Environment Variables for Use in Gateway Programming.
http: //www.december.com/html/spec/envvars.html, 1997.

[DECEMBER, 1997]
December J., Level 4 HTML Summary.
http: //www.december.com/html/spec/level4.html, 1997.

[DrarTAL THINK, 1997]
Digital Think Orientation, The DigitalThink Training Method.
http: //www digitalthink.com/, 1997.

[DORING, 1996]
Déring N., Lernen und Lehren im Netz.
http: //www.cs.tu—berlin.de/~doering/, 1996.

[EASTMOND & GRANGER, 1997]
Eastmond D., Granger D., Reaching Distance Students with Computer Network Technology
(Part I).
http://distance—educator.com/Reaching—1.2.html, 1997.

[EBERL & JACOBSEN, 1997]

Eberl M., Jacobsen J., Macromedia Director 5 fiir Insider.
SAMS, Haar bei Miinchen, 1997.

104 Bibliography

[EspINOzZA & HOOK, 1996]
Espinoza F., H60k K., An Interactive WWW Interface to an Adaptive Information System.
http: //www sics.se/ “espinoza/, 1996.

[ESPINOZA, 1996]
Espinoza F., A World Wide Web Based Presentation System For An Adaptive Help System.
Uppsala University Computer Science Department, Uppsala, 1996.

[FABER, 1993]
Faber W., Hypermediale Lernsysteme.
http://aia.wu—wien.ac.at/Publikationen/Faber/WU—-JT .html, 1993.

[FLANAGAN, 1996]
Flanagan D., Java in a Nutshell.
O’Reilly & Associates Inc., Camebridge, 1996.

[FURMAN & IsaAcs, 1997]
Furman S., Isaacs S., Positioning HTML Elements with Cascading Style Sheets.
http: //www.w3.org/TR/WD—positioning-19970819, 1997.

[GONSCHOREK, 1997]
Gonschorek M., Intelligente Lehrsysteme — Ein Uberblick.
Institut fiir Informatik, Informatik I (Hauptseminar Intelligente Lehrsysteme), Technische Uni-
versitdt Miinchen, Miinchen, 1997.

[HALL ET AL., 1996]
Hall W., Davis H., Hutchings G., Rethinking Hypermedia — The Microcosm Approach.
Kluwer Academic Publishers, Dordrecht, 1996.

[HANDKE, 1997]
Handke J., Multimedia mit ToolBook und Macromedia Director.
Oldenbourg, Miinchen, 1997.

[HARRER, 1996]
Harrer A., Ein didaktisches Konzept fiir die Lernerfiihrung in einem intelligenten Lehrsystem.
Institut fiir Informatik, Informatik I (Diplomarbeit), Technische Universitdt Miinchen, Miinchen,
1996.

[HEATH, 1996]
Heath S., Multimedia & Communications Technology.
Focal Press, London, 1996.

[HERZOG, 1996]
Herzog C., SYPROS: Ein intelligentes Lehrsystem fiir die Synchronisation paralleler Prozesse
mit Semaphoren.
Institut fir Informatik, Informatik I (Kolloquiumsvortrag Duisburg), Technische Universitét
Miinchen, Miinchen, 1996.

[HOOK, 1996]
Ho66k K., Plan— and User Sensitive Help (P.U.S.H.).
http: //www.sics.se/uacm/push.html, 1996.

[HUSKES, 1997]
Hiiskes R., Schnittmuster fiir Web—Schneider.
c’t 1997, Heft 12 (pp240-245), Hannover, 1997.

[INTERNET ENGINEERING TASK FORCE, 1997]
Internet Engineering Task Force, Hypertext Transfer Protocol HTTP/1.1 (draft).
http: //www.w3.org/Protocols/History.html, 1997.

[KAISER & KAISER, 1994]
Kaiser A., Kaiser R., Studienbuch Piddagogik — Grund— und Priifungswissen, 7. Auflage.
Cornelsen Scriptor, Frankfurt, 1994.

Bibliography 105

[KEITH, 1997]
Keith D., LISP Lecture Notes.
http: //www.ifi.ntnu.no/“keithd/classes/lisp/lectures/I1/index.htm, 1997.

[KLEINSCHROTH, 1996]
Kleinschroth R., Neues Lernen mit dem Computer.
rororo, 1996.

[KoPKA, 1994]
Kopka H., BTEX Einfiihrung Band 1.
Addison-Wesley (Deutschland), Bonn, 1994.

[LAI ET AL., 1995]
Lai M., Chen B., Yuan S., Toward A New Educational Environment.
http: //www.w3.org/Conferences/ WWW4 /Papers/238/, 1995.

[LIE & Bos, 1996]
Lie H., Bos B., Cascading Style Sheets —Level 1.
http: //www.w3.org/pub/WWW /TR/REC-CSS1, 1996.

[MADIGAN ET AL., 1995]
Madigan D., Clarkson D., Donnell D., Hunt E., Keim M., Minstrell J., Nason M., Schaffner A.,
Volinsky C., Facet—based Learning for Statistics.
http: //www.stat.washington.edu/andrew/fbl.html, 1995.

[MALLERY, 1997]
Mallery J., Common Lisp HTTP Server Homepage.
http: //www.ai.mit.edu/projects/iiip/doc/cl-http/home—page.html, 1997.

[MALLERY, 1994]
Mallery J., A Common LISP Hypermedia Server.
Proceeding of The First International Conference on The World-Wide Web, Geneva, 1994.

[NETSCAPE DEVELOPER, 1997]
Netscape Developer, General Developer Documentation.
http://developer.netscape.com/library/documentation/index.html, 1997.

[NETSCAPE DEVELOPER, 1997A]
Netscape Developer, JavaScript Documentation.
http: //developer.netscape.com/, 1997.

[NETSCAPE DEVELOPER, 1997B]
Netscape Developer, Plug—in Basics.
http://developer.netscape.com/library/documentation/communicator/plugin/, 1997.

[NETSCAPE DEVELOPER, 1997¢]
Netscape Developer, Dynamic Documents.
http: //developer.netscape.com/library/documentation/communicator/dynhtml/index.htm, 1997.

[NETSCAPE DEVELOPER, 1997D]
Netscape Developer, LiveConnect.
http: //home.netscape.com/comprod/products/navigator/version_3.0/building_blocks/liveconnect/
how.html, 1997.

[NETSCAPE DEVELOPER, 1997E]
Netscape Developer, Persistent Client State HTTP Cookies.
http://developer.netscape.com/library/documentation/index.html, 1997.

[NISTOR & MANDL, 1995]
Nistor N., Mandl H., Lernen in Computernetzwerken. Erfahrungen mit einem virtuellen Seminar
(Forschungsbericht 64).
Ludwig-Maximilians—Universitit, Lehrstuhl fiir Empirische Péddagogik und Pidagogische Psy-
chologie, Miinchen, 1995.

106 Bibliography

[PING-JER ET AL., 1996]
Ping—Jer Y., Bih—Horng C., Ming—Chih L., Shyan—-Ming Y., Synchronous Navigation Control
for Distance Learning on the Web.
http: //www5conf.inria.fr/fich_html|/papers/P28/Overview.html, 1996.

[POLSON & RICHARDSON, 1988]
Polson M. C., Richardson J. J., Foundations of Intelligent Tutoring Systems.
Lawrence Erlbaum Associates Publishers, Hillsdale NJ, 1988.

[POWERSIM CORPORATION, 1997]
Powersim Corporation, Powersim Metro .JX.
http: //www.powersim.no/, 1997.

[RAGGETT ET AL., 1997]
Raggett D., Le Hors A., Jacobs 1., HT'ML 4.0 Specification.
http: //www.w3.org/ TR/WD-html40-970917/, 1997.

[REINHARDT & SCHEWE, 1995]
Reinhardt B., Schewe S., A Shell for Intelligent Tutoring Systems.
http: //ki-server.informatik.uni-wuerzburg.de/HTMLs/Is6—info/Publikationen /95 /Reinhardt—Al-
ED95/Reinhardt—Al-ED95.doc.html, 1995.

[REINMANN-ROTHMEIER & MANDL, 1995]
Reinmann—Rothmeier G., Mandl H., Auf dem Weg ins Informationszeitalter? Was Wirtschaft,
Politik und Offentlichkeit bewegt und auf die Bildung zukommt (Forschungsbericht 54).
Ludwig-Maximilians—Universitit, Lehrstuhl fiir Empirische Péddagogik und Pidagogische Psy-
chologie, Miinchen, 1995.

[SAcKL, 1997]
Sackl R., Computergestiitzte Kommunikation fiir verteilte Lerngruppen in der Vorlesung 2000
Umgebung und prototypische Implementierung in Java.
Institut fiir Informatik, Informatik XI (Diplomarbeit), Technische Universitdt Miinchen,
Miinchen, 1997.

[SCHAFFNER ET AL., 1996]
Schaffner A., Madigan D., Donnell D., Hunt E., Keim M., Minstrell J., Nason M., Volinsky C.,
Benchmarks, Facets and the World—-Wide Web: Tools for the Advancements of Undergraduate
Statistics Education.
http: //www.stat.washington.edu/andrew /fbl.html, 1996.

[SCHULMEISTER, 1997]
Schulmeister R., Grundlagen hypermedialer Lernsysteme, 2. Auflage.
Oldenbourg, Miinchen, 1997.

[ScHULT, 1996]
Schult T., Computer Based Training.
c’t 1996, Heft 9 (p. 178-186), Hannover, 1996.

[SEIDEL, 1993]
Seidel C., Computer Based Training.
Verlag fiir angewandte Psychologie, Verlagsgruppe Hogrefe, Gottingen, 1993.

[SOFTKEY INTERATIONAL, 1996]
Softkey International, Infopedia 2 — The Ultimate Multimedia Encyclopedia and Reference
Library.
Softkey International, Infopedia Version Release R11, 1996.

[SpADA, 1992]
Spada H. (publ.), Allgemeine Psychologie, 2. Auflage.
Verlag Hans Huber, Bern, 1992.

Bibliography 107

[SUN MICROSYSTEMS, 1997]
Sun Microsystems Inc., JDK 1.1.1 Documentation.
http://java.sun.com/, 1997.

[SUN MICROSYSTEMS, 1998A]
Sun Microsystems Inc., What is Swing?
http://java.sun.com/products/jfc/swingdoc—current/what is_swing.html, 1998.

[SUN MICROSYSTEMS, 1998B]
Sun Microsystems Inc., Frequently Asked Questions — Java Security.
http://java.sun.com/sfaq/index.html, 1998.

[TAUBENBERGER, 1997]
Taubenberger M., Entwicklung einer adaptiven Erklrirungskomponente fiir das intelligente
Lehrsystem POINTRA unter Berticksichtigung von Ldsungsvarianten.
Institut fiir Informatik, Informatik I (Diplomarbeit), Technische Universitdt Miinchen, Miinchen,
1997.

[WEBER & SPECHT, 1997]
Weber G., Specht M., User Modeling and Adaptive Navigation Support in WWW-based Tutor-
ing Systems.
Proceeding of User Modeling ’97, Cagliari, 1997.

[WEINERT & MANDL, 1997]
Weinert F., Mandl H. (publ.), Psychologie der Erwachsenenbildung. Enzyklopédie der Psycholo-
gie, Band 4, 11. Kapitel.
Verlagsgruppe Hogrefe, Gottingen, 1997.

[WELSCH, 1996]
Welsch N., Entwicklung von Multimedia—Projekten mit Macromedia Director und Lingo.
Springer—Verlag, Berlin, 1996.

[WENGER, 1987]
Wenger E., Artificial Intelligence and Tutoring Systems.
Morgan—Kaufmann, Los Altos, 1987.

Reinhard Schaffner
I

Concepts for the Implementation

of Tutorial Systems
in HTML and Java

Diplomarbeit
1998

mﬂm Technische Universitat Munchen
Fakultat fur Informatik

