
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

FAKULTÄT FÜR INFORMATIK

der Technischen Universität München

Lehrstuhl VIII – Rechnerstruktur/-architektur – Prof. Dr. E. Jessen

Concepts for the Implementation of

Tutorial Systems in HTML and Java

Diplomarbeit

Reinhard Scha�ner

Aufgabensteller: Univ.-Prof. Dr.-Ing. Eike Jessen

Betreuer: Dr. Michael Greiner

�

Abgabedatum: 15. Mai 1998

�

Neue Adresse seit 01. Januar 1998:

Siemens AG, Zentralabteilung Technik ZT PP 2S, Otto-Hahn-Ring 6, D-81730 M�unchen

Hiermit versichere ich, da� ich diese Diplomarbeit selbst�andig verfa�t und nur die angegebenen Quellen und

Hilfsmittel verwendet habe.

Reinhard Scha�ner

M�unchen, den 15. Mai 1998.

Abstract

The main goal of this thesis is to examine various techniques for implementing interactive

tutorial systems in the world{wide web. I commence with an overview of psychological and

pedagogical issues concerned with the design of tutorial systems in general. In particular I

discuss the ACT memory model proposed by J. R. Anderson and a scheme for classifying

various types of educational software. I continue by examining the main building blocks

of intelligent tutoring systems. In addition I discuss the use of hypertext, and cooperative

working tools, the design of exercises, and user adaption.

During the growth of the world{wide web various techniques have been established to allow

distance education and user interaction. This discussion will focus on methods which are

suitable for implementing tutorial systems and will conclude by rating and enhancing the

methods introduced. This thesis involved the development of a prototypal tutorial system

using JavaScript and Cookies. A general introduction to the system is given and the design

issues of the implementation and problems encountered in the development are discussed.

The thesis concludes with an overview of the possible future of tutorial systems in the

world{wide web.

Contents v

Contents

1 Preface 1

1.1 Acknowledgements . 1

1.2 Introduction . 1

1.2.1 Objective of the Thesis . 2

1.2.2 Limitations . 3

1.2.3 Caveats . 3

2 Theoretical Background 4

2.1 Psychological Background . 4

2.1.1 ACT . 4

2.1.2 Problem Solving . 6

2.1.3 Motivation, Feedback, and Adaption . 8

2.1.4 Didactics . 9

2.1.5 Limitations . 10

2.2 Classi�cation of Educational Software . 10

2.2.1 Drill{and{Practice and CAI Programs . 11

2.2.2 Tutoring Systems . 11

2.2.3 Hypertext and Hypermedia Systems . 12

2.2.4 Simulations . 14

2.2.5 Cognitive Tools . 15

2.2.6 Conclusion . 15

2.3 General Structure of Intelligent Tutoring Systems . 16

2.3.1 Components of Intelligent Tutoring Systems . 16

2.3.2 Example: Sypros . 19

3 Techniques 20

3.1 Hypertext Markup Language Extensions . 20

3.1.1 Netscape's Layers . 21

3.1.2 Cascading Style Sheets . 22

3.1.3 Hypertext Markup Language Version 4.0 . 24

3.1.4 Toward A New Educational Environment . 25

3.1.5 Discussion . 26

3.2 Knowledge{Based Hypertext Transfer Protocol Server . 27

3.2.1 Common Lisp . 28

3.2.2 Hypertext Transfer Protocol . 29

vi Contents

3.2.3 Common Lisp Hypertext Transfer Protocol Server 30

3.2.4 Example: Episodic Learner . 31

3.2.5 Discussion . 32

3.3 Authoring System and Courseware Plug{In . 33

3.3.1 Plug{In Basics . 33

3.3.2 Authoring Systems and Courseware . 35

3.3.2.1 Example: Macromedia Director, AuthorWare, and Shockwave 35

3.3.2.2 Example: Asymetrix ToolBook II and Neuron 37

3.3.3 Discussion . 38

3.4 Common Gateway Interface . 39

3.4.1 Common Gateway Interface Basics . 39

3.4.2 Common Gateway Interface in Education . 41

3.4.2.1 Example: Virtual Seminar Koalah . 41

3.4.2.2 Example: L

A

T

E

X{Tutorial . 42

3.4.2.3 Example: Plan and User Sensitive Help 43

3.4.3 Discussion . 44

3.5 JavaScript and Cookies . 45

3.5.1 JavaScript Basics . 46

3.5.2 Cookies . 48

3.5.3 LiveConnect . 49

3.5.4 Discussion . 50

3.6 Java . 51

3.6.1 Java Basics . 52

3.6.2 Examples for Tutorial Systems in Java . 55

3.6.2.1 Example: PUSH Graphical User Interface 55

3.6.2.2 Example: Powersim Simulations . 56

3.6.3 Discussion . 56

3.7 Conclusion . 57

4 Implementation 59

4.1 Tootsie . 59

4.1.1 Tootsie Basics . 59

4.1.1.1 Tootsie System Components . 59

4.1.1.2 Classi�cation of Tootsie . 59

4.1.1.3 Implementational Technique . 61

4.1.2 Overview . 62

4.2 Tootsie Development System . 62

4.2.1 Preparations . 62

4.2.1.1 Step 1: Technique . 62

4.2.1.2 Step 2: Exercises . 63

4.2.1.3 Step 3: Resources . 63

Contents vii

4.2.1.4 Step 4: Templates . 64

4.2.2 Toolset System Architecture . 64

4.2.3 Generation . 64

4.2.3.1 Step 1: Glossary . 64

4.2.3.2 Step 2: Exercises . 65

4.2.3.3 Step 3: Links . 66

4.2.3.4 Step 4: Link Reference . 67

4.2.3.5 Step 5: Table of Contents . 67

4.2.4 Adaption . 68

4.2.4.1 Adaption Variables . 68

4.2.4.2 Adaption Procedure . 70

4.2.5 Flexibility . 70

4.2.5.1 Events . 70

4.2.5.2 Exercises . 71

4.3 Tootsie Tutorial System . 71

4.3.1 User Interface . 72

4.3.1.1 General . 73

4.3.1.2 Menu Items . 73

4.3.1.3 Cookie Cutter . 74

4.3.1.4 Exercise Wizard . 75

4.3.2 Cooperative Work Area . 75

4.3.2.1 Chat . 76

4.3.2.2 News . 77

4.3.3 System Evaluation . 78

5 Conclusion and Outlook 80

Appendix 83

A Resource Variables 85

B Tutorial System Source Files 90

B.1 Tootsie Development System . 90

B.1.1 Common Gateway Interface Source Files . 90

B.1.2 User Interface and System Files . 91

B.2 Tootsie Tutorial System . 92

B.2.1 User Interface and Work Files . 92

B.2.2 Add{On . 93

viii Contents

C Example for Creating an Exercise 94

C.1 Generate Glossary . 94

C.2 Generate Exercise . 94

C.3 Generate Links . 96

C.4 Generate Table of Contents . 97

D Glossary 98

E Figures 100

Bibliography 103

Chapter1

Preface

1.1 Acknowledgements

I like to express my sincerest thanks to the following people who contributed to this master's thesis (in

alphabetical order). To all those who are not mentioned personally I say \thank you", because without

you none of this would have been possible.

� Martin Christa, for solving technical problems and for giving me the opportunity of using his CD{

ROM writer.

� Fredrik Espinoza, for being so kind as to send me his master's thesis.

� Dr Michael Greiner, for providing this fabulous L

A

T

E

X{style and supervising my work.

� Karin Hinkel, for the xgrab tool.

� Carol Phillips, for everything. I wish you all the best for your dissertation, and I am looking forward

to receiving a copy of it.

� Kirsten Proske, for her comments and her help in testing the prototypal implementation of the

Tootsie system.

� Roland Sackl, for giving me his master's thesis and for the information on how to include images

in L

A

T

E

X documents.

� Thorsten Schmitt, for lending me his master's thesis and for his L

A

T

E

X introduction.

� Ed Tyson, for once reading my thesis and giving me feedback. I wish you all the best in your career.

� Christian Wenk and Irmengard Aschauer, for giving advice in regard to didactics and English

grammar.

In addition, I am greatly indepted to Christian Herzog, John C. Mallery, Andrew A. Scha�ner, and

Gerhard Weber who kindly answered my questions concerning their research projects.

1.2 Introduction

Since the growth in personal computer use much research and testing has been carried out in the

areas of computer{based training and intelligent tutoring systems, the latter often combined with, or

introduced by, knowledge{based systems. As [Reinmann{Rothmeier & Mandl, 1995] state, the use

of electronic media in education has been o�cially recommended, and so learning with multimedia has

been investigated by educators and psychologists for some time. The introduction of the world{wide

web has greatly increased the interest in providing distance education, fueled mainly by the enormous

media attention given to the technological possibilities. Telecommunications and distant cooperation are

now seen as the key to the future of education and the combining of existing tutorial systems and the

internet would provide a way forward. Research into computer learning networks is still in its infancy

1

2 Introduction [Section 1.2]

but net{based learning systems are advancing and o�ering new opportunities in learning and teaching

that include multimedia but go much further.

Any lecturer wishing to publish his course on the internet must know how this can be achieved. Compared

with the large number of existing training sites, the number of used techniques is small but �nding the

right implementation for a particular tutorial system can be very time{consuming. The questions the

developer must ask himself are:

� What kind of technique will best suit his current needs?

� What are the advantages of each implementation?

� What problems may arise?

� Are the components standardised?

� What kind of exercise is he planning and will the student learn the most from it?

� Finally, how much time must be invested before training can start and how easily can the imple-

mented system be modi�ed or extended?

To answer all these questions and also gain basic background knowledge of psychology, pedagogy and

tutorial systems in general can require a vast amount of time. This thesis is designed to assist the

developer in answering these questions by providing a summary of the various techniques available and

therefore more of his time can be spent on deciding upon an appropriate course structure and relevant

exercises. To illustrate what can be achieved and where the restrictions lie, a prototypal implementation

of a tutorial system was developed using one of the promising techniques. The system, which has been

called Tootsie

1

, consists of two parts, one, the developer's toolset, which is used to generate exercise �les.

The other is accessed by the student and displays the previously generated exercise �les. The toolset is

written in the programming language C, and the developer's graphical interface is developed using the

common hypertext markup language, HTML, in conjunction with the scripting language, JavaScript.

The tutorial system, which the student sees, also uses HTML and JavaScript. The latter provides a way

to change the contents of a web page dynamically and adapt to the students needs with the help of

persistent client{state information, the so{called Cookies.

The source code of the miscellaneous program, template and user interface �les, which amount to more

than 12000 lines of code, is not included in this master's thesis but may be obtained from the author

without charge. The author disclaims all warranties with regard to that software, including all implied

warranties of merchantability and �tness. In no event shall the author be liable for any special, indirect

or consequential damages or any damages whatsoever resulting from loss of use, data or pro�ts, whether

in an action of contract, negligence or other tortious action, arising out of or in connection with the use or

performance of that software. The reader is strongly encouraged to extend the current possibilities of the

software, but he should keep in mind that the current version of Tootsie is a prototypal implementation

whose development process was limited to a six{month period. Therefore in the following chapters

di�erent techniques will be introduced �rst which may be better suited to the individual developer's needs.

1.2.1 Objective of the Thesis

This thesis is mainly concerned with a comparison of di�erent techniques used to provide user interaction

and user adaption for web{based systems. Each technique is brie
y introduced, and then compared with

other suitable methods. Especially the bene�ts for educational training are pointed out in the discussion.

Nevertheless the fundamental methods of each technique are speci�cally introduced, in order to increase

the ability to understand inherent possibilities and limitations, and to acquire knowledge that is important

for an implementation. The main purpose is to help the developer of a tutorial system in making a well{

based and reasonable decision, while considering the advantages and disadvantages arising with a certain

technique.

1

Tutorial system for interactive exercises.

[Chapter 1] Preface 3

1.2.2 Limitations

The thesis does not discuss any technical preliminaries for making internet communication

and multimedia applications possible. A general overview of techniques used in networks, such

as compression algorithms and network protocols, can be found in [Heath, 1996]. The im-

plications on society which arise from the use of modern technologies are also not covered.

[Reinmann{Rothmeier & Mandl, 1995] wrote more on this subject and added a detailed ref-

erence list of publications. [Reinmann{Rothmeier & Mandl, 1995] also emphasize that humans

must be taught in the use of modern technologies, if those are entering society and a�ecting education.

Therefore it is important to know what competences are necessary then and how these can be trained. In

this respect I do not intend to replace other forms of learning with the tools and techniques introduced

in this thesis. Traditional textbooks, lectures, and work groups are still vital for education, and their

presentation as well as their intended study goals will certainly bene�t from the additional training,

which tutorial systems provide.

1.2.3 Caveats

In the following points I explain how certain terms are used throughout this thesis:

� I will write \he" or \his" when speaking of a single student or system developer. This, of course, is

not intended to exclude female students or system developers.

� The terms \content provider", \author", and \system developer" are used interchangeably and

describe a person, who is responsible for the development of a tutorial system.

� If not stated otherwise, the terms \tutorial system", also abbreviated as \system", and \educational

software" mean the same. According to the classi�cation in Section 2.2 a \tutoring system" is a

special form of tutorial system in this thesis, but not necessarily in other publications.

Chapter2

Theoretical Background

2.1 Psychological Background

2.1.1 ACT

Anderson's ACT

1

is regarded as a general theory of cognition, with particular emphasis on skill

acquisition and problem solving. In this chapter I will give a brief overview of ACT and its application

in educational software, especially in the �eld of \tutoring", the primary purpose of which is to

assist students in learning the domain of a computer{based course. As references I will use the works

by [Anderson et al., 1995], [Anderson, 1996], [Wenger, 1987], [Schulmeister, 1997], and

[Spada, 1992], who describe the topic in detail. In the �rst version of ACT, which was completed in

1982, Anderson divides the mental representation of knowledge into two categories: declarative and

procedural. Declarative knowledge is organised in the form of semantic nets, which consist of smaller

knowledge units, called \propositions", that describe facts, e.g. \the Earth is round", or relationships

between objects, e.g. \Peter has a dog". In contrast to that, procedural knowledge, which de�nes the

student's abilities and cognitive skills, is expressed in goal{related rules, similarily to \if{then" constructs

known from programming languages. Whenever a task goal must be reached, the preconditions of the

rules are tested and the goal is split up into smaller sub{goals or task states accordingly. Therefore,

each rule speci�es an action that must be performed or a consequence that must be considered by the

student.

Acquiring declarative knowledge is not very di�cult, because the propositions are directly encoded from

observations or instructions. However, declarative knowledge does not enable students to solve complex

problems. As mentioned before, it is the purpose of procedural knowledge to �nd suitable actions for the

current context. Therefore, goal{independent declarative knowledge must be converted into production

rules, but unfortunately this is problematic: production rules are mainly learnt by frequently applying

declarative knowledge during problem solving activities (i.e. learning{by{doing). Therefore, Anderson

and his research team came to the conclusion that computer{based tutorial systems which use the

ACT model had to be implemented to test their hypotheses. As these sample systems are described in

[Anderson et al., 1995] and [Wenger, 1987], I will not explain them here, but quote their primary

intention instead:

In human cognition, the most common form of internal modi�cation is learning, and therefore

the study of learning should be particularly revealing of cognitive structures. As environments

for the investigation of learning capabilities, intelligent tutoring systems are at once
exible and

predictable, two qualities which make them attractive experimentation tools ([Wenger, 1987], p290).

Long{term memory is a net of interweaved and connected propositions, which is extended by the student

constantly. The size of long{term memory is in principle unlimited, but knowledge structures will be

forgotten, i.e. the available information cannot be accessed anymore, if they are not continously strength-

ened through practice or by encoding additional and partially redundant propositions. According to

1

Adaptive Control of Thought.

4

[Chapter 2] Theoretical Background 5

[Anderson, 1996] the activation level of a knowledge unit, i.e. its strength, controls the frequency of

its use (p178). Whenever an item of information is remembered, the associated items in the same net-

work structure will also be activated, so the stimulation is spreading along the links and their a�liated

knowledge structures. This process is not only started intentionally but also subconsciously

2

(p183). If

a student must elaborate the knowledge contained in a domain, challenging the student to discover and

answer questions for the current subject will result in the underlying production rules and propositions

being remembered better than in less active environments (pp188/193). [Schulmeister, 1997] critizises

that the instructional strategies of Anderson's ACT are reminiscent of Skinner's operant conditioning

and behavioristic theories

3

, which are often inappropriate to teach the student complex problem solving

algorithms with the help of intelligent tutoring systems (p119). However, Anderson's initial motivation in

developing intelligent tutoring systems was mainly to learn more about skill acquisition than to produce

practical classroom results. Nevertheless he proposed eight principles, based on his ACT theory, in order

to design a computer{based instructional technology, called cognitive tutor, which supports the student in

learning{by{doing.With the tutor's help skills can be displayed, monitored, and appropriate feedback can

be given, in order to guide their knowledge acquisition by the system (see [Anderson et al., 1995]).

� Principle 1: Represent student competence as a production set

As in behaviorism and programmed instruction a tutor separates skills into smaller components,

sometimes called frames, that are presented to the learner. In contrast to the aforementioned learn-

ing methods, however, the ACT frames enable an accurate model of the target skill that allows the

tutor to interpret the student's actions properly.

� Principle 2: Communicate the goal structure underlying the problem solving

Although skills are split up into sub{goals or sub{tasks according to principle 1, it is often necessary

to show the students explicitly what steps are required in solving a problem and how they are

connected. Therefore, a tutor should use a method of rei�cation that illustrates the structure and

the relationships of goals and their sub{goals, for example, in form of a proof graph.

� Principle 3: Provide instruction in the problem solving context

Instructions for the knowledge domain are best placed between each section, in which production

rules are learnt by the students. Whenever a problem arises the students can return to this point,

which has a �xed position between the sections. However, \[the] di�culty with this principle is that

there is not a detailed theoretical interpretation of why it is true and so it is a little hard to know

how to apply it in detail ([Anderson et al., 1995])". Thus, various positions for instructions

must be tried: for example, students �nd instructions to interfer with their problem solving if these

are presented at the precise point where they are needed.

� Principle 4: Promote an abstract understanding of the problem solving knowledge

An algorithm for solving a particular problem is often introduced by an example. However, students

tend to memorize production rules that are speci�cally focused on the example itself rather than

the more abstract idea behind. Therefore, learners need special guidance in order to promote the

creation of production rules with more general preconditions.

� Principle 5: Minimize working memory load

The expression \working memory" is commonly used for information units, which are activated by

mental operations in order to process a cognitive task. The capacity of working memory is normally

limited to seven information units, however with the help of \chunking"

4

, i.e. a mechanism that

combines formerly separate units to a single \chunk", the necessary memory space can be reduced

(see [Spada, 1992], p144). If a student learns a new production rule, he must keep all the relevant

information simultaneously active in his memory. Consequently the size of working memory is

restricting the student's ability to process all the input, therefore it is essential to minimize the load

on working memory. Both, a well{designed user interface and a well{structured course, can lead to

an environment, which does not interfere with human learning and understanding.

� Principle 6: Provide immediate feedback on errors

This principle has provoked many discussions in the �eld of tutorial systems (see Section 2.1.3),

2

In literature this is called \associative priming".

3

See also Sections 2.2.1 and 3.3.2.

4

Introduced by Miller in 1956.

6 Psychological Background [Section 2.1]

and even Anderson's ACT theory has been modi�ed accordingly over the last years. Formerly it

was thought that production rules were formed by examining the steps which lead to a solution,

but currently \[. . .] the learner examines the resulting solution [. . .] and builds productions from

that. Thus, it does not matter whether all the critical steps occur together in time or not | only

that they be represented in the �nal solution ([Anderson et al., 1995])". Therefore, immediate

feedback is not necessary anymore, however it can still prevent the student from spending a long

time following an erroneous path in problem solving.

� Principle 7: Adjust the grain size of instruction with learning

The idea is that students combine production rules to larger units that reach the same goal by

just one cognitive step. Consequently, this e�ects the analysis of the student's problem solving and

giving instructions, because in the later stages of a course only these extended rules are observed

by the tutor.

� Principle 8: Facilitate successive approximations to the target skill

When students learn a new domain, they certainly do not know all the steps that lead to a solution.

Therefore, it is the tutor's task to add and explain the missing parts. While the student proceeds

in the course and acquires new skills, this support must be reduced by the tutor until most of

the work is done by the student himself. According to [Anderson et al., 1995] this successive

approximation, which results in a less and less pervasive tutor, has frequently worked quite well in

practice.

2.1.2 Problem Solving

In the aforementioned section I have introduced the idea of procedural knowledge of Anderson's ACT

theory. Students mainly acquire procedural knowledge during problem solving processes, because they

have to divide goals into smaller sub{goals for which they know \operators". Operators are actions which

can transform problem states, so a sequence of operators describes the solution to a problem. They

are acquired by exploration, analogy (with an existing example), and direct instruction, for example

by a human tutor. Problem solving often requires the task of searching a problem space which consists

of various problem states. Therefore, a learner's goal is to �nd the right path through a labyrinth of

states and operators. This process imposes some di�culties, because humans tend to avoid returning

to previous problem states although it is necessary. In addition, they often reject operators which lead

to states that at �rst glance di�er more from the �nal goal than earlier problem solving stages (see

[Anderson, 1996], pp235{250).

An important element of tutorial systems is the support which students receive in their problem solving

process. Therefore, a tutorial system must be able to reconstruct the student's solution, in order to

understand the student's reasoning. The following examples show how this problem can be resolved by

creating an internal representation of the student's behaviour within a tutorial system. I will not mention

the di�erent theories of problem solving in general (like inductive reasoning, see e.g. [Spada, 1992]),

but concentrate on methods which can be applied in computer{based systems to analyse the student's

solution. Consequently, the main principles for modelling a student's knowledge state are:

� The system assumes from correct solutions that the various operators were correctly applied during

problem solving.

� In computer{based analysis incorrect problem solving is a consequence of correctly performing an

erroneous or incomplete algorithm. An alternative de�nition is that errors occur when students

wrongly ful�l correct problem solving steps, however \[it] is more fruitful to regard the child as

faithfully executing a faulty algorithm than as wrongly following a correct one (see [Spada, 1992],

p207)". Errors are therefore not determined by chance, but by a rule{based, systematic, however

erroneous problem solving procedure.

� The main goal is to get an individual model for each student.

[Chapter 2] Theoretical Background 7

The next step for a tutorial system would be to generate a step{by{step solution to any problem, whose

result is then presented to the student. However, this requires the representation of cognitive structures

and processes in a computer{based system. In Section 2.3.2 I will describe the intelligent tutoring system

5

Sypros, which o�ers this functionality, but in general the decomposition of procedural knowledge and

skills depends on a detailed understanding of the knowledge domain by the system developers as well

as a profound concept of implementation. The consequence is that either the domain must be limited

or the generation process itself. For the simpler task of following a student's problem solving, however,

[Spada, 1992] presents two methods, which are both based on the aforementioned principles:

� Method by Brown and Burton

Brown and Burton represent knowledge in form of a procedural network, in which larger goals are

divided into sub{goals until the granularity has reached a level, on which errors happen by chance

and not by inaccuracy

6

(of the problem solving algorithm). The nodes of the network are also

called procedures which are connected with \consists{of" relationships. Therefore, the algorithm of

a student's problem solving can be described in detail by generating a model which solely consists

of the involved procedures. A student's incorrect behaviour is reproduced by \bugs", which are

represented by missing procedures, incorrect procedures, or a wrong order of procedures. However,

for complex domains modelling the student's problem solving can be di�cult, because for each

possible bug an individual network must be generated, so due to the combinatorial complexity

restrictions must be made. Another disadvantage is that the used representational language of

procedural knowledge cannot explain a bug or express how the bug was acquired by the student.

Its sole purpose is to replace correct and incorrect procedures (see [Spada, 1992], pp208{212, and

[Wenger, 1987], pp156/157).

� Study by Young and O'Shea

Young and O'Shea use in their study a system which consists of a data storage, an interpreter,

and an archive of \if{then" rules, which are also called productions. In order to execute a rule the

interpreter must successfully compare the elements of the data storage with the preconditions of an

\if{then" rule. However, if more than one rule can be applied the interpreter will also have to resolve

the con
ict by deciding which rule is chosen. The student's problem solving can now be expressed in

a sequence of rules, whose result is a production system that tries to match the student's solutions

as precisely as possible. Missing or erroneous knowledge skills are then represented as missing rules

or incorrect preconditions. In comparison to the method by Brown and Burton production systems

have two advantages. First, knowledge representation is uniform, homogeneous, and modular, which

means that knowledge is stored in an equal and extensible structure throughout the system. Second,

modelling the di�erences between students requires less computation than generating networks for

all the possible bugs (see [Spada, 1992], pp212{216).

The aforementioned methods, however, have a common problem: the set of correct and incorrect

procedures or production rules must be known in advance before a student's solution can be diagnosed.

Consequently, the system developer must include all the possible errors that might occur. For larger

systems this is often not practical or even possible. However, the repair theory by Brown and Van Lehn

introduces a new idea, which is based on the fact that students tend to replace missing parts of an

algorithm with correct or incorrect problem solving steps creatively. The same mechanism is applied in

the repair theory: the missing links are \repaired" by a problem solver with new sub{procedures, which

are derived from heuristic strategies like \go back one step" etc. Rules and procedures are organised in

a GAO

7

graph which [Wenger, 1987] describes as follows:

Essentially, the basic mechanism of a GAO graph is that of a production system, with the advantages

of the �nely grained formalism of production rules. But this production system is interpreted with

a goal stack of interspersed AND and OR goals that provide the representation with an explicit

5

For the classi�cation of educational software refer to Section 2.2.

6

I.e. a systematic error which is caused for example by false training. This sentence is not a contradiction to the afore-

mentioned principles of modelling students' knowledge states. It is a consequence of Brown and Burton's assumption for

explaining students' errors in problem solving.

7

Generalized AND/OR.

8 Psychological Background [Section 2.1]

control structure (p166).

The rule interpreter of the production system follows the GAO graph until it reaches an impasse. In this

case, the problem solver tries to repair the missing rule. The advantage is that repairs are performed

locally before control is given back to the interpreter, so major reconsiderations of the algorithm are not

necessary. This reduces the complexity of computation which burdens the aforementioned methods (see

[Spada, 1992], pp216{218, and [Wenger, 1987], pp167/168).

2.1.3 Motivation, Feedback, and Adaption

In general, the learner's motivation can be categorised by examining their motive to approach success

8

and their motive to avoid failure

9

. According to Atkinson (see [Spada, 1992], p469) the resulting

tendency of students' behaviour, RT, is then described by the following formula:

RT = (M

S

� S

S

� P

S

)� (M

F

� S

F

� P

F

)

It includes the motive disposition, which is either directed toward success M

S

or avoiding failure M

F

,

the stimulus of success S

S

or failure S

F

, and the (subjective) probability of succeeding P

S

or failing P

F

a goal. Therefore, success{driven students (M

S

>M

F

) prefer exercises of intermediate di�culty which

are oriented toward achieving a clear objective, because the product of S

S

and P

S

promises the highest

results. On the other hand, failure{driven learners (M

S

< M

F

) reject these tasks in particular as the

term of S

F

multiplied with P

F

then reaches its maximum (see [Spada, 1992], p479). The consequence

is that success{driven students often set realistic goals, and whenever errors occur they reduce their

expectations in order to avoid frustration. Failure{driven learners, however, choose either di�cult or

simple exercises, so in both cases their anticipations are con�rmed: in the �rst case they will presumably

fail, whereas in the second one the goal will certainly be reached. Here, the tutor component of a tutorial

system is very important as failure{driven students tend to follow the standard which a role{model sets

(despite their own experiences). In contrast to that, success{driven students reject that standard: they

are either not in
uenced or assume, when comparing a low standard of the role{model, that their own

level of expertise is higher than it really is (and vice versa). In literature, this misconception is also

called contra{imitative behaviour (again see [Spada, 1992], p393).

Failure{driven students in particular depend on feedback by the tutorial system, because if it does not

exist the student's level of achievement and performance will decrease (see [Harrer, 1996], p56). Early

tutorial systems, which are based on Skinner's programmed instruction, apply two forms of feedback,

which are given to students after they have either succeeded or failed a task. However, failure feedback

which is directly presented to the learner may have been one reason why these tutorial systems were not

successful. Students saw feedback less as a source of information rather than as a form of punishment.

Therefore, the possibility of aversive reactions toward the system increased. In addition, motivational

feedback for exercises does not have a long{term success. On the contrary, it is generally regarded as being

boring, and even diminishes the students' motivation. According to [Polson & Richardson, 1988]

constant intrusive feedback and advice may be decremental to instruction, and feedback that is unclear

or too narrow in focus may also adversely a�ect learning. Instead, it should provide answers to \how

am I doing?". In general, feedback must be able to �nd errors in a student's reasoning and report these.

However, a system developer must avoid feedback being interpreted as a form of reward or punishment.

Even, if feedback is not directly presented to the learners, a diagnosis of the student's current problem

solving, for example with bug reports, can include a \covert" component: \covert feedback may be of

more harm than instrumental use to the learner [. . . , it] might impede and prevent learning rather than

assist it ([Schulmeister, 1997], p110)". Nevertheless, as long as feedback is not considered as a method

8

Called \success{driven" in this thesis.

9

Called \failure{driven" in this thesis.

[Chapter 2] Theoretical Background 9

of control or correction by the student, it will be accepted. Consequently, elaboration feedback is often

better than veri�cation feedback: the �rst is either an inherent part of the user interface, for example

direct manipulation, or it gives explanations in combination with the correct answer, whereas the

second one just informs the student whether his solution is right or wrong (see [Schulmeister, 1997],

pp109{111).

Closely related with feedback is the ability of the tutorial system to adapt to the student, so a
exible

dialog between system and learner is possible. However, implementing an \intelligent" dialog is currently

di�cult, because the target of adaption has neither su�ciently been researched yet nor can it be described

in the formal logics of computers. Adaption is mainly concerned in presenting the information space and

knowledge in a way that suits the student's individual preferences. This is either done by controlling the

student's activities (also called \planned adaptivity", normally used in intelligent tutoring systems) or

by giving the students the possibility to discover a broad information space on their own by giving them

control over the system (also called \hermeneutical adaptivity", which is di�cult to implement. The

closest representative would be a hypertext system). According to [Espinoza, 1996] the issue of trust

is especially important for a tutorial system. As adaption processes are just able to guess the students'

intentions, he decided to choose an intermediate solution: \one way of increasing the trust in the system,

is to place some control over the system in the hands of the user. [. . .] If the choices of the system are

incorrect, the user can alter them". Partial user control is often necessary, because the granularity of

the adaption process is limited. In order to reach a natural form of adaption many learner's parameters

must be considered, however this could enormously increase the set of diagnosis strategies, which must

be regarded by the system. Therefore, [Schulmeister, 1997] also speaks of \microadaption" (p201),

because the \[. . .] adaptability in the best systems is rather coarse when compared to the way human

teachers can weave diagnosis and didactics tightly together ([Wenger, 1987], p426)". As mentioned

before, a tighter control, which results from a more detailed adaption process, hinders the students'

progress, and according to [Schulmeister, 1997] contradicts learning processes. Thus, fuzzy diagnosis,

which is not precise, is considered instead.

2.1.4 Didactics

Didactics is the \the art or science of teaching", which uses the following principles to choose and trans-

form subjects of a knowledge domain into course subjects (see [Kaiser & Kaiser, 1994], pp240{262):

� Course subjects are based on current or future situations which are relevant for the students.

� Help and orientational guidance must be given to make decisions for actions in the course domain

visible. Based on these, the student must then be able to manage real{life situations.

� Learning processes must be based on scienti�c reasoning. Therefore, the student should adopt

scienti�c methods like the ability to accept counter{arguments or to examine a topic objectively.

In addition, the possibilities as well as the limitations of scienti�c reasoning should be learnt.

� Course subjects are either presented as a typical example, which helps to discuss similar subjects,

or in form of a speci�c case, which allows a general insight into a topic.

� Course subjects are organised in a reasonable course structure, often consisting of important facts,

keywords, theories, models etc.

In tutorial systems these general principles are applied by the didactic module in order to adapt its

presentation of topics to the needs of individual students based on the curricular information included in

the course domain. The didactic module must also decide when interventions by the tutor component are

necessary and what information is then given to the learner. Possible advice includes user guidance or ori-

entational help, explanations, and tips on solving a particular problem. [Reinhardt & Schewe, 1995]

recommend using the same didactic methods in a tutorial system that are already common in the

domain. This makes sense because didactic methods can largely di�er from domain to domain. However,

they do not cover all aspects of tutorial systems as [Harrer, 1996] writes:

10 Classi�cation of Educational Software [Section 2.2]

Didactic models mainly give indications on which course subjects should be chosen and how

long{term planning of a course is done. They provide little precise advice for helping students in

their problem solving process (translated, p66).

A discussion on didactic operations for tutorial systems can be found in the book by [Wenger, 1987],

pp395{415, who specialises in pedagogical activities that are intended to have a direct e�ect on the

student.

2.1.5 Limitations

When evaluating tutorial systems special situations and circumstances must be regarded which can

in
uence the results of studies that examine the e�ects on the student's learning process. The following

points must therefore be considered:

� Hawthorne e�ect

The Hawthorne e�ect describes a situation where test results are in
uenced by the mere fact that

students are under observation. Learners often feel stimulated to increase output or accomplishments

when evaluating a tutorial system.

� Size of test groups

The size of a test group plays an important role, merely for statistical reasons. Results which were

found after testing a few people do not have to be incorrect, but they might be irregular if applied

to a di�erent course.

� Novelty

The use of the computer in learning is quite new, so most students gain their motivation for working

with a tutorial system through curiosity. After a while, however, this stimulating e�ect must be

replaced by a motivating environment that is part of the tutorial system itself. In contrast to that,

the use of computers for education can also repel learners who are not familiar with this technology.

Both situations must therefore be considered when evaluating tutorial systems. In addition, with

the advances of computer hardware and software the results of studies, which are often not older

than 10 years, are quickly out{dated. So, for example, the preference for \one window" systems, is

continously decreasing as learners get more and more used to \multiple window" systems.

Consequently, results and studies in the �eld of educational software should be critically questioned by the

reader before decisions for implementation are made. The reason is that the design process of a tutorial

system requires a lot of time and energy by the system developer. For example, [Schulmeister, 1997]

writes that in courseware design between 50 to 500 hours of development time are necessary for one hour

of a course (p105).

2.2 Classi�cation of Educational Software

In educational research using the computer for training has always been an important application, so

over the years various software concepts were developed, which di�ered not only in the technologies

that were available at that time, but also in their psychological and epistemological theories. As this

thesis discusses the various techniques to implement a tutorial system on the world{wide web, it is �rst

important for the system developer to know what types of tutorial systems or educational software

exist. Although the following classi�cation is based on stand{alone programs, it will nevertheless

present conceptual advantages and disadvantages, which will also be valid in an network environment.

Learning with the help of computer networks, however, has not been thoroughly researched yet. It

still lacks the experience and the systematic research known from other learning environments. In

the �eld of group dynamics, for example, the �rst observations and theoretical considerations have

just been made (see [Reinmann{Rothmeier & Mandl, 1995]). The following chapter refers to

the books and articles by [Weinert & Mandl, 1997], [Schulmeister, 1997], [Wenger, 1987],

[Chapter 2] Theoretical Background 11

[Brusilovsky & Pesin, 1996], and [Seidel, 1993], who discuss the classi�cation of educational

software in detail or introduce new ideas into the topic.

2.2.1 Drill{and{Practice and CAI Programs

Traditional drill{and{practice programs are based on the principles of programmed instruction, which

received its major impetus from the work of B. F. Skinner, who described in 1954 how programs could

be developed scienti�cally. Their main goal is to teach a knowledge domain which is well{structured,

or to train students in simple skills that are suitable for mastering routine tasks. Traditionally, the

student could hardly in
uence the linear and sequential course
ow, which was de�ned by the system

developer, so over the years other forms of training have been adopted. For these systems the ambiguous

expression \computer{aided instruction

10

" is frequently used. According to [Wenger, 1987] traditional

CAI programs are reminiscent books, whose contents are set in advance by the author, but which

allow readers to choose the chapters they want to read individually. More sophisticated CAI systems

almost resemble intelligent tutoring systems

11

, as they are able to generate exercises or adapt the level

of di�culty to the student's preferences and performances (pp4/5). ITS, however, uses a structural

scheme

12

for the underlying system, whose components are often implemented with the help of a

knowledge base. The main di�erence between CAI and ITS is the psychological foundation: CAI

is mainly based on operant conditioning and the theory of behaviorism, while ITS is founded on

cognitive psychology. In contrast to ITS, computer{aided instruction and drill{and{practice programs

especially, use presentation units called frames that the tutorial system developer creates by splitting

up the information space and the teacher's expertise. According to the (strictly) de�ned course
ow

these frames are displayed, and the student must normally answer a question contained in each

frame. Afterwards the CAI system immediately gives positive or negative feedback, i.e. \right" or

\wrong", before the next frame is shown and the same operations are repeated again. Consequently,

CAI programs are better suited to domains whose information space consists of facts and whose

learning goals are clearly expressed. Thus, the programs can take direct advantage of the pedagogical

experience of human teachers, who must however include in the system all the possible reactions that are

required in respect of the current circumstances (see [Wenger, 1987], p4). As programmed instruction

is mainly used for courseware applications, further details on this theory can also be found in Section 3.3.2.

2.2.2 Tutoring Systems

As the name suggests a tutoring system is mainly aimed to support the student with an individual learning

environment that acts similarly to a human tutor. Therefore, it must be
exible, dialog{oriented, and

adaptable in regard to the user's input and knowledge. According to [Weinert & Mandl, 1997] the

following types of tutorial systems exist:

� Traditional tutoring system

Traditional tutoring systems present information about a complex subject to the student, on which

questions are asked, and depending on the student's answer a new course
ow is selected. Recent

systems are also able to adapt to the student's knowledge and preferences. However, these imple-

mentations are rarely based on the results which were made in studies of cognitive psychology.

The quality of the dialog with the student separates traditional tutorial systems from ITS, but is

comparable with the knowledge presentation of sophisticated CAI programs.

� Intelligent tutoring system

I will discuss the structure of intelligent tutoring systems (ITS) in the following Section 2.3, so only

a short overview will be given here. In contrast to traditional tutorial systems, ITS use theories of

cognitive psychology and arti�cial intelligence, and so they are able to give advice to the student.

10

Abbreviated as CAI.

11

Abbreviated as ITS.

12

See Section 2.3.

12 Classi�cation of Educational Software [Section 2.2]

However, applying these theories is generally di�cult: it is not easy to create a suitable model for

the student's cognitive structure, and it is doubtful whether the skills of a human tutor, which are

not restricted to just one domain, can ever be reproduced. Nevertheless, some solutions, which are

currently used in ITS research, are also found on page 18.

� Tele{tutoring system

Tele{tutoring systems avoid the problems which arise in designing and programming an arti�cial

tutor by integrating a human instructor into the system: either the student and the tutor are

working on the same exercise or the tutor is contacted by the student when needed. However, as

the name \tele" suggests the learner and the instructor do not have to be in the same room. In a

prototypal implementation

13

the communication and the cooperation is established with the help of

a computer network that transmits all the textual and audiovisual data. A disadvantage is that most

of the time a tutor must be present, although the system itself can also be accessed if the instructor

is absent. In my opinion, the bene�ts of having a human tutor on{site are certainly not restricted

to tutoring systems alone. Unfortunately, this solution cannot be seen as a permanent replacement

for a computer tutor. E�ort must still be made in developing a good tutor model, because human

instructors are not permanently available. Either the size of a group of learners or the missing

resources to pay all the tutors may prevent the use of tele{tutoring systems. The technological

capabilities, however, do not have to be as advanced as in the aforementioned prototypal system.

For example, a similar system can be established on the world{wide web by using synchronous

navigation

14

for a cooperative work environment and a chat

15

program for immediate questions

and answers.

2.2.3 Hypertext and Hypermedia Systems

Hypertext{based systems belong to the category of exploratory systems. These closely resemble human

thinking, because in an information domain problem solving requires the steps of searching, probing, and

exploring by the students. In particular, the learner's freedom to test new solutions and the possibility

to discover other areas of the domain are inevitable in hypertext{based systems. However, the success of

exploratory learning is in
uenced by many variables: for example, it essentially depends on the student's

self{con�dence and competence (see [Schulmeister, 1997], p72). In psychology the theory, on which

these systems are based, is called constructivism. Hereby, knowledge is dynamically created by a sub{

part of the student's recognition process, which emphasizes the active interpretation

16

of an object by

the learner. Therefore, knowledge cannot be simply transfered to other students without a separate

reconstruction process (p74). According to [Kleinschroth, 1996] hypertext environments inherently

support the acquisition of knowledge, because students can search the domain by following links, which

lead to the di�erent information units. This form of navigation is also called browsing, and it helps

learners to create or reconstruct knowledge structures respectively. Which requirements must an \ideal"

hypertext environment ful�l? Browsing the knowledge domain should not be restricted, so links to access

all the relevant information must be o�ered. In addition, it should be possible to return to a familiar

starting point, whenever a student is lost within the information space or reentering the system. Finally,

the author must prevent learners, who are not experienced in hypertext environments or computers,

having problems in using them (see [Faber, 1993]). These design guidelines are supposed to diminish

a phenomenon, which is frequently called \lost{in{hyperspace". [Kleinschroth, 1996] describes two

forms:

� Museum e�ect

Essential information is \lost", missed or not found within a large information space.

� Hansel{and{Gretel e�ect

After browsing a domain for a while users often tend to forget, what they were really looking for.

13

MS{DOS 5.0 zum Selbststudium, developed by Siemens AG.

14

See Section 3.2.2.

15

See Section 4.3.2.1.

16

In contrast to that, objectivism says that cognition, i.e. the \act or process of knowing", consists of a memory represen-

tation of objects, that is corresponding to the objects in the outside world.

[Chapter 2] Theoretical Background 13

Possible solutions to these problems are commonly aimed at the navigation support of hypertext

environments, so, for example, organisational diagrams of the information space

17

or orientational

indicators for the current position in the domain are used. However, [Schulmeister, 1997] asks

whether the \lost{in{hyperspace" theory is a myth of pedagogical science (p59). Often authors think

that a stricter form of navigation must be introduced, and they justify their hypothesis with the

di�culties which learners might have in retrieving the necessary information. However, these changes

also lead to a system, where hypertext links can be less freely accessed. It can be argued that a \mild

disorientation can excite readers, increasing their concentration, intensity, and engagement [. . .]. The

complete absence of orientational challenges is dull and uncomfortable. A boring hypertext is every bit

as bad as a confusing one ([Schulmeister, 1997], p59)". In addition, readers of hypertext documents

sometimes �nd information, which is very useful for them, by coincidence. However, this will be less

likely if the navigation between documents is limited. The phenomenon itself is called \serendipity",

the e�ect of which is often seen as an analogy to exploratory learning. With the aforementioned

arguments it is obvious that \lost{in{hyperspace" is not an inherent part or mischief of hypertext,

but a problem in the design concept of a navigation component. Disorientation and confusion can also

come from the segmentation of the information space. In order to structure a knowledge domain for

a hypertext environment, the various documents are split up into smaller information units, called

\chunks"

18

, which are then linked together to a �nal system by the author. However, if the size of

each chunk is too small, it will be more di�cult for the learner to see a coherent context between

the segments. Consequently, an author must ensure that each chunk includes contextual information

(see [Schulmeister, 1997], p61), like additional links to corresponding documents. According to

[Faber, 1993] hypertext systems are currently seen as a more suitable basis for developing tutorial

systems than drill{and{practice or CAI programs. The behavioristic learning model of CAI is often

inadequate for educational software, so hypertext systems with their less hierarchical structure, which

can be discovered by the students through browsing, are prefered. Although CAI has included new

technologies, the importance of its underlying pedagogical concept is still neglected. The same is often

said about hypertext, but it already ful�ls the preconditions of exploratory learning by de�niton.

Partially as a consequence, adaption to the learner plays a minor role in current hypertext systems. In

the paper by [Brusilovsky & Pesin, 1996], however, two techniques of \adaptive hypermedia" are

introduced: adaptive presentation and adaptive navigation support. The �rst one distinguishes di�erent

contents for novice or expert users, so beginners get more explanations than skilled students. The

second one includes an adaptive ordering technique, which arranges links in hypertext pages according

to their importance. For example, the closer a link is to the top of a list, the more relevant it is for

the user. Another form of adaptive navigation support is visual annotation of links as used on the

pages of the UMUAI

19

journal: conferences which are held in the reader's country are speci�cally marked.

A paradigm for an interactive program that promotes the acquisition of cognitive structures in an

exploratory learning environment is the so called \microworld". It is an arti�cial and closed world with

its own rules, whose enclosed knowledge must be discovered by the students: \[. . .] a microworld may

well be conceived of as a play area that gives students a chance to experiment with concepts that do not

otherwise exist in a world in that combination ([Schulmeister, 1997], p51)". Based on the principles

of constructivism a typical example for a microworld is Papert's Logo and Turtletalk curriculum. The

students learn the programming language Logo by drawing graphs with the help of a \turtle". The turtle

itself is controlled by Logo commands, and whenever it moves it leaves a trail in the form of a line on

the computer screen. However, with microworlds it is not always certain whether or not the acquired

knowledge can be used in real world examples, because their domain only consists of a small subset of

rules. According to [Brusilovsky & Pesin, 1996] the approach of ITS and learning environments,

like microworlds, is complimentary, so he suggests the combination of both: ITS will inherit the merits

of an exploratory and student{driven form of learning, while microworlds, which are controlled by an

intelligent tutor, could provide a more e�cient system to the user. If an intelligent tutoring system is

based on the microworld concept, the implementation of a tutor component will in particular be di�cult,

because students must be able to test their hypotheses, carry out experiments, and evaluate the results.

17

In literature often called \maps".

18

These chunks should not be confused with the information units of Miller's memory model (see page 5), although these

hypertext chunks are aimed to reduce the work{load of the human working memory.

19

User Modeling and User{Adapted Interaction, see http://umuai.informatik.uni{essen.de/.

14 Classi�cation of Educational Software [Section 2.2]

In this case it is better if simulations are chosen for learning ([Schulmeister, 1997], pp212/213). In

their article [Brusilovsky & Pesin, 1996] describe the design of a sample application, which combines

the advantages of ITS and hypertext learning environments, so I will not explain the various integration

steps here. In my discussion on techniques for implementing a tutorial system on the world{wide web I

will introduce the underlying hypertext model of the world{wide web, which is based on the hypertext

markup language HTML (see Section 3.1). More advanced hypertext environments exist, but currently

only HTML, in conjunction with a world{wide web browser

20

, allows systems that are universally

accessible.

2.2.4 Simulations

Computer simulations try to describe a dynamic system that exists in reality with the help of a network

structure. The nodes or elements of the network represent objects of the real world. These are connected

by links if the internal state of an element depends on external circumstances, i.e. other elements. The

components of a network must normally be expressed in mathematical form, so a simulation is able

to compute the in
uences on neighbouring objects, whenever a change has occurred in one element.

Consequently, a lot of time and resources must be invested into the design of a network model, because

otherwise all the results of a simulation may be incorrect in comparison to real events or situations. For

students a simulation provides an exploratory learning environment, in which they can experiment with

the di�erent variables of the system in order to understand the underlying dependencies. This certainly

promotes the creation of mental models, which [Spada, 1992] describes as large{scale knowledge units.

Mental models are based on subjective observations by a person and consist of knowledge structures

and processes that are used in speci�c situations, which are highly complex but less transparent. In

problem solving mental models are very important because only if the mental representation is adequate,

can a complex situation be managed by a person successfully (pp157/158). Therefore, \learning{by{

doing", which is an essential part of simulations, helps students to train suitable reactions in complex

environments. [Weinert & Mandl, 1997] distinguish the following goals in simulations:

� Substitute for experiments

This type of simulation is often necessary if real experiments are too consumptive, expensive,

or dangerous. Users can especially test their hypotheses in domains where the e�ects of natural

processes can otherwise hardly be observed.

� Model building systems

With their help users are able to write simulations by de�ning the underlying models themselves.

Therefore, model building systems provide the tools and components, that are necessary to create

an individual simulation which is then tested by the users.

� Role playing

A role in an unfamiliar environment is assigned to the learner, who must try to reach a given goal by

making the correct decisions. A typical example is D�orner's Lohhausen, a city in which the learner

is playing the mayor's role, and has to lead the town into a prosperous future (see [Spada, 1992],

p266). These simulations o�er the opportunity to train in complex situations, which cannot be

solved in precisely de�ned steps. Nevertheless learners are often highly motivated when using these

systems.

� Training of psychomotor skills

The simulations train psychomotor skills which must become a routine task for the students. There-

fore, the system itself is very similar to reality, especially if physical information or feedback is

necessary (e.g. in
ight simulators).

� Case{based learning systems

Case{based learning systems are very common in medical training: the students must �nd the

correct illness and treatment for a given patient (i.e. case). Consequently, they have to analyse the

information presented by the system, ask further questions, and base their diagnosis on the collected

material.

20

A program that is used for navigation in the network.

[Chapter 2] Theoretical Background 15

I conclude that simulations are able to o�er a learning environment, which closely resembles real life

situations. Their highly motivating presentation of a domain is especially an advantage compared to the

other types of tutorial systems. They only lack an adaptive support for learners, but research studies

must show �rst, how simulations can integrate a help functionality, which is able to optimize the learning

process (see [Weinert & Mandl, 1997]). Nevertheless, the popularity of simulations has already led to

an implementation on the world{wide web (see Section 3.6.2.2).

2.2.5 Cognitive Tools

Cognitive tools are best described as programs that help to extend or enhance human cognition. They are

able to make certain tasks easier for the users, and therefore relieve human information processing from

redundant work. The new capacities can then be assigned to more complex cognitive procedures, that

demand problem solving skills or the student's unlimited attention. A typical example for a cognitive

tool is a text processing program. With the help of WYSIWYG

21

and direct manipulation

22

the user can

solely concentrate on the layout and the contents of a text, rather than worrying about printer commands

etc. With these tools students are required to create knowledge structures on their own by learning

cognitive concepts through exploration. Students often have to compensate for the missing structure of

the underlying learning goals by planning their studies actively. In contrast to that, intelligent tutoring

systems use an instructional method that starts with smaller sub{goals, which successively form a basis

for higher knowledge skills. \This strongly suggests that the philosophy of intelligent tutoring is really

orthogonal to the cognitive tool approach to learning ([Schulmeister, 1997], p344)".

2.2.6 Conclusion

According to [Seidel, 1993] the technical expectations in educational software are manifold: it must be

portable to run on di�erent computer platforms, support the student with an individual and adaptive

environment, allow access to data which is not part of the system itself, analyse the student's actions,

contain interactive components like simulations, and o�er various cooperative work tools. However,

[Reinmann{Rothmeier & Mandl, 1995] think that software developers often concentrate on anima-

tions or \funny graphics" rather than on didactic design and domain{ or task{oriented contents. The

bene�ts of using multimedia components in learning will decrease if the underlying pedagogical concept

has not been considered in the early stages of the design process. I conclude this chapter with a subjective

discussion on the various types of educational software. An overview of this discussion is presented in

table 2.1 which compares the di�erent types of educational software in regard to those aspects which

are mostly required by tutorial system developers. In my opinion drill{and{practice programs, which

can easily be implemented on the world{wide web, are suitable if basic skills must be taught to the

students, e.g. in an introductory course. However, this does not include solving complex problems,

which will be required in the learner's everyday work. For that purpose I recommend intelligent tutoring

systems, preferably in conjunction with a hypertext and simulation component. On the world{wide

web a hypertext system is realized with the help of HTML, which describes the layout of a document

and the link structure of a course. An intelligent tutoring system can be based on HTML as well, thus

incorporating the bene�ts of both. Building a comprehensive resource base for the hypertext component,

which contains all the information the student might demand

23

, is essential to enable successful learning.

Simulations, which can also be embedded into a web{based tutorial system in form of Java applets,

provide all the prerequisites that are needed for motivating and task{oriented training. However, the

domains are mainly restricted to administrative applications, like management, or environments with

simple physical rules, which rarely include natural systems because of the many unknown correlations.

Cognitive tools can hardly be adapted to the world{wide web, because they require control of the user

interface or the underlying browser application which is currently not possible (for example, user events

for extended GUI

24

operations etc.). However, some of their concepts, especially the idea of direct

21

What you see is what you get. It describes a technique, which is mainly used by text processing programs, for displaying

a text on screen in exactly the same way as it will be printed on paper.

22

A graphical user interface allows direct manipulation by representing system operations with the help of metaphors, like

\drag{and{drop".

23

See also Sections 4.2.1.2 and 4.2.3.5.

16 General Structure of Intelligent Tutoring Systems [Section 2.3]

manipulation, can be used in Java applets or simulation plug{ins

25

.

Table 2.1: Classi�cation of Educational Software.

CAI ITS hypertext simulation cognitive tool

reality

a

training of facts,

less useful outside

the program.

depending on

domain; close to

actual tasks of

learners.

depending on do-

main.

training of situ-

ations which are

relevant to the

learner.

depending on the

purpose of tool.

orientation

b

low; rarely com-

plex and motivat-

ing problems.

depending on the

implementation.

depending on the

implementation.

motivating learn-

ing environment

with complex

problems.

depending on use

of tool.

activity

c

less active than

reconstructive

thinking.

active problem

solving.

high; exploratory

learning environ-

ment.

high; student

makes complex

decisions.

high; student

must compensate

missing learning

goals.

adaptivity

d

low; immediate

feedback.

inherent part of

ITS.

missing in current

systems.

de�cits in current

systems.

low; students

should have

necessary skills

before.

a

Contents are based on actual requirements in the real world.

b

Domain{speci�c problems that are preferably complex and motivating.

c

Learner's role in a system.

d

Adaptive support for the student.

2.3 General Structure of Intelligent Tutoring Systems

Based on the works by [Wenger, 1987], [Schulmeister, 1997], [Herzog, 1996], and

[Gonschorek, 1997] I will shortly introduce a modular structure for intelligent tutoring sys-

tems, which is frequently used in ITS research today. For an in{depth discussion of the current topic

I recommend the �rst two books, as I will mainly focus on a general overview that explains the basic

terms. The last two authors have been working on an intelligent tutoring system called Sypros

26

, which

incorporates most of the methods and techniques that will be mentioned here and therefore, I will also

have a closer look at the ideas behind Sypros.

2.3.1 Components of Intelligent Tutoring Systems

The main di�erence to systems based on computer{aided instruction is already encompassed in the term

ITS itself: intelligence. Intelligent tutoring systems try to copy the skills of human tutors by focusing

their concepts solely on that goal. They represent their domain knowledge in a separate part of the

system, which is called the expert model as the skills and pro�ciency of a human expert are stored

there. Knowledge is collected by applying various techniques, like interviews, questionnaires, \think

aloud"{protocols, and monitoring the expert's problem solving steps. According to Anderson's ACT

model two forms of knowledge are included into the expert's representation: procedural knowledge

which consists of \if{then"{rules, and declarative knowledge which is best described as general facts,

that are not focused on speci�c tasks. In addition, [Schulmeister, 1997] mentions heuristic knowledge

which is based on human experts' experiences and general methods for problem solving. Knowledge of

an expert model is either represented in form of a black box or glass box model. The �rst cannot tell

the student what steps it made to solve a certain task, so its internal derivations remain invisible. The

24

Graphical User Interface.

25

See page 37.

26

Synchronisation paralleler Prozesse mit Semaphoren, developed at Technische Universit�at M�unchen.

[Chapter 2] Theoretical Background 17

knowledge
pedagogical
skills

student’s

Response

User Interface
communication between system and student

Student Model Tutor Model

Expert Model
representation of expert’s knowledge

Diagnosis

Information

Exercise

Figure 2.1: Structural scheme of an intelligent tutoring system. It consists of four di�erent components

which resemble essential parts of human education.

second one however works like a traditional knowledge{base system, and its algorithms are transparent

to the student. Sometimes it is also combined with a cognitive model which is responsible for presenting

all the di�erent steps which lead to a solution in a way that closely resembles human problem solving.

Unfortunately, implementing a cognitive model is even more complex than designing a glass box model,

which itself is often replaced by the simpler black box model.

In traditional learning environments we do not only �nd an expert, but also a student, a tutor, and a

method in which the student communicates with the other members. Consequently, an intelligent tutoring

system contains similar concepts for each participant, thus reasonably integrating the real{life example

into the world of computer{based education (see �gure 2.1). The student model represents the current

expertise of a student, and stores information about typical errors, problem solving methods, and the

learner's preferences. The di�erent student models in ITS research can be classi�ed by using a scheme

which is based on:

� Information

A student model depends on the anticipations that it can make on the student's goals. While some

systems design their student model around the �nal results of a task, others are able to follow the

student's sub{plans that lead to a solution.

� Representation

Within the system the student's knowledge is either stored as a subset or deviation

27

model. The

�rst one keeps track of to what extend a subset of the expert's domain knowledge has been learned,

while the other one monitors what errors have been made by the learner and where the student's

solution di�ers from the expert's answer. However, both concepts use a \simplistic model of the

27

Instead of \deviation" we also �nd the terms \buggy" and \perturbation" in ITS literature.

18 General Structure of Intelligent Tutoring Systems [Section 2.3]

learning process" (see [Schulmeister, 1997], p184), so compound bugs, i.e. mistakes that depend

on each other, are hard to �nd, random errors are di�cult to detect, and individual learning styles

are rarely implemented.

� Diagnosis

Diagnosing the current student's knowledge requires techniques that depend on the knowledge

type, which is either procedural or declarative, and the granularity of the collected information.

In ITS research model tracing, plan detection, issue tracing and \generate{and{test" exercises are

frequently used. In rule{based intelligent tutoring systems model tracing tries to compute the sub{

goals that lead to the student's answer. Plan detection internally creates a tree, whose root represents

the problem, the inner nodes the sub{goals, and the leaves all the steps which are required to solve

the problem. In contrast to that, issue tracing de�nes two variables for each information unit of

the expert model, and their values are increased whenever the student either uses or forgets a unit.

Finally, \generate{and{test" exercises are suitable to detect compound errors, because a series of

exercises, which is especially designed to �nd a certain problem or misconception, is presented to

the student.

The adaptability of an intelligent tutoring system is mainly based on the information stored in the

student model, so the possibilities of the tutor model are also determined by the coverage and accuracy of

the anticipated student's knowledge (see [Wenger, 1987], p16). The main task of the tutor model is to

control the presentation of information. According to the di�erences between expert and student model

on{going topics or exercises must be chosen, whose proper timing and form of presentation depend on

the implemented pedagogical and didactic rules. For example, intelligent tutoring systems frequently use

Socratic dialogs, in which the student is asked questions by the system in order to provoke a self{re
ective

analysis of errors. Coaching on the other hand is mainly concerned with introducing suitable examples

and training various methods in problem solving. Therefore, the tutor model is responsible for giving

advice to the student, to correct and increase the student's knowledge, and to provide motivational

feedback. The epistemological concept used in current tutor models is based on instruction, and less

on exploratory learning evironments, as in hypertext systems (see [Schulmeister, 1997], p186).

Consequently, the learner's freedom is limited, however students who are afraid of failures pro�t from

guided learning. Nevertheless, current tutor models still have the following two disadvantages: the passive

role in which the student is put by the system, and the lack of human intuition and common knowledge.

[Schulmeister, 1997] also criticises the fact that students are rarely asked to participate in the design

process of an ITS, and although a student model assumes the student's knowledge, the learner must still

develop his own expertise actively. Otherwise he will just acquire the subset of the expert model, which

is given by the system, and not the pro�ciency of a real expert (p187).

The remaining component of an intelligent tutoring system is the user interface. Its importance should

not be underestimated by the system developer, because it will be the only part of an ITS with which

the student directly interacts. Firstly, the interface must present the di�erent course topics in an un-

derstandable way, and secondly, o�er the student a robust and e�cient environment for learning and

working with the system. An ITS is only then regarded as \intelligent" if its user interface is both
exible

and adaptive to the student's needs. The system and the learner desirably communicate in a natural

language

28

, however it is more important that the meaning behind the student's actions is understood

(also see Anderson's suggestions on page 54). [Schulmeister, 1997] distinguishes four di�erent forms

of interaction:

� Socratic dialog

� Coaching

The tutor lets the student work, and provides help only when asked.

� Learning{by{doing

The tutor guides the student through the course. It suggests when to select information, and derives

di�erences between the student and the expert model from this.

28

Please note that: \The most natural means of communication between people is not necessarily the most `natural' one

between human and computer [. . .]. People are di�erent from computers, and human{human interaction is not necessarily

an appropriate model for human operation of computers ([Schulmeister, 1997], p58)".

[Chapter 2] Theoretical Background 19

� Learning{while{doing

The tutor remains in the background and occasionally gives advice.

Although in my opinion the general structure of intelligent tutoring systems is very reasonable, because

the student, the expert, and the tutor are represented as in real life, some critique has been raised in

regard to existing ITS implementations. [Schulmeister, 1997] quotes various research papers which

say that the promises of intelligent tutoring systems are certainly overrated (pp203{220). Mainly, the

primitive student model, the limitations by choosing a suitable knowledge domain, the restrictions

in communication that are imposed by the current computer technology, and the hypocritical goal

of tutor models to pretend that they understand the learner, are disapproved. However, these are

only implementational details that may be modi�ed or replaced in future systems. For example, an

exploratory learning environment can be introduced in a tutor model without having to change the

remaining parts of the system. Therefore the structural scheme itself is not concerned, but it must be

clear that designing an good ITS fundamentally depends on integrating psychological and educational

components which may not be available with modern computer technologies. However, it must be asked

whether the abilities of human tutors are not overrated. Sometimes they also fail to give the motivational

support and cognitive strategies necessary for successful problem solving.

2.3.2 Example: Sypros

The aforementioned structure has already been applied in the intelligent tutoring system Sypros, which

was developed at Technische Universit�at M�unchen. The system is used in training students in how pro-

cesses which can be executed simultaneously are synchronised with the help of semaphores. The exercises

are displayed in textual form, and must be solved by de�ning the necessary semaphore variables and

adding the suitable request and release operations. Therefore, an editor is integrated into the system,

which also allows the constant monitoring of the student's actions by the system. Internally, a plan{goal{

tree is built up for each exercise, in which goals represent the di�erent methods, e.g. variable declarations

or semaphore states. These lead to a plan that knows how to transform a conceptual goal into a program-

ming construct, like semaphore operations or variable initialisations. The student's solution is continously

matched with the stored plan{goal{tree, and consecutively interpreted and diagnosed according to the

expert's knowledge. Furthermore, a long{term model of the student's goals is created, and it collects

information on how often goals were used by the learner during the course. A visual feedback is im-

mediately given in the form of a sad, inconclusive or smiling face. If the system is set to represent an

exploratory, but guided learning environment, it will recommend further steps or explain errors when the

window, in which the face is displayed, is clicked by the student. In addition, Sypros o�ers the possibility

to simulate a synchronised program. This functionality closely resembles debuggers that are known from

many programming languages: variable values are monitored, the source code is stepped through and

markers can be set. Remarkably errors are automatically detected, and the simulated steps which lead

to an error are shown to the learner. Also, programs are searched for conceptual errors which use too

many synchronisation operations and therefore restrict allowed program runs. Finally, a hypertext{based

help manual is implemented to assist the student with de�nitions or further explanations at any time.

All these features make Sypros a useful tutoring system for training learners in its very limited domain.

Nevertheless, the restriction to just one aspect in parallel programming, i.e. synchronisation, is not a

disadvantage at all. On the contrary, the complexity of such a system is reduced, and therefore details,

which are often demanded by critics of intelligent tutoring systems, can be implemented

29

. In my opinion,

Sypros must still be seen as a tool to increase understanding of its domain rather than a replacement

for a human lecturer. Hopefully one day Sypros will also be available on the world{wide web, and will

certainly use the techniques that I will introduce in Chapter 3.

29

E.g. the didactic concepts by [Harrer, 1996].

Chapter3

Techniques

The hypertext markup language HTML is the basis for all world{wide web documents, except for

programs which are solely written in Java. By de�nition, HTML allows the implementation of an

exploratory learning environment, whose objects are realized using one of the following techniques and

are embedded into an HTML document. Although the techniques are explained in separate chapters,

they depend on HTML and must therefore be seen in connection with HTML to enhance the possibilities

HTML already o�ers. Although choosing one (or more) of the following techniques is an essential part

of the design process of a tutorial system, the decision for the underlying pedagogical principles and

knowledge presentation is more important. The course structure and the student's progress depend on

the learning environment rather than on fancy graphics, which nevertheless raise the attraction of a

system if applied correctly.

3.1 Hypertext Markup Language Extensions

The invention of the terms hypertext (and hypermedia) are credited to Ted Nelson in 1965.

[Hall et al., 1996] writes:

The terms hypertext and hypermedia are often used quite interchangeably. Hypertext in the strict

sense only applies to text{based systems; hypermedia is simply the extension of hypertext to include

multimedia data [. . .]. Nelson de�nes hypertext as non{sequential writing and views it as a literary

medium, but the ideas the term encapsulates are wider than that and include cross{referencing and

the association of items (pp11/12).

In this chapter I will focus on a derivative of hypertext, the hypertext markup language, that was

developed by Tim Berners{Lee at CERN in the early 1990s. It is a universally understood language for

publishing documents on the world{wide web

1

, where both, HTML and WWW, have largely bene�ted

from each other: HTML is an easy{to{use language for describing the appearance of text and for

distributing documents globally, and since the Mosaic browser was introduced it has blossomed with

the explosive growth of the WWW. Furthermore, main features of HTML include the accessibility from

anywhere and the provision of open protocols ([Hall et al., 1996]), as for each version of HTML

it was tried to agree on a common standard to ensure that content providers can rely on hypertext

language, which will be understood by most world{wide web browsers. The advantage for the user

is that documents do not become unreadable in a short period of time ([Raggett et al., 1997]).

The world{wide web is a closed hypermedia system. In contrast to open hypermedia systems

2

it

combines data and hyperlink anchors in one HTML document. Unfortunately, link management is

generally non{existent, and thus it is almost impossible to maintain and update information without

1

Commonly abbreviated as WWW.

2

E.g. Microcosm, see [Hall et al., 1996].

20

[Chapter 3] Techniques 21

carefully examining the anchors

3

pointing to and from a document. Consequently, frequent world{

wide web users often receive error messages, saying that the location of a document is invalid when

accessing a reference in a search engine. Nevertheless Hall thinks that it is possible to implement

almost any hypertext model which does not rely on embedded links in the world{wide web (p27).

A sample system with better consistency and integrity of links is Hyper{G, which was developed at

the Universit�at Graz. Links are stored in separate databases, and link management tools support

the developer in keeping references updated. Unfortunately, its hypertext functionality can only be

accessed through dedicated Hyper{G viewers, though client gateways to the most popular browsers by

Netscape and Microsoft exist. Therefore using Hyper{G can also be considered for a tutorial system,

but in this thesis I will focus the attention on techniques which will work with a broader user base.

For more information on Hyper{G I like to refer to [Andrews, 1996], who covers all the basic principles.

After these introductory words I will propose what the newest version of the hypertext markup language

can contribute to the design and creation of tutorial systems. In the new HTML 4.0 draft many ideas

were included that will radically change accepted layout practices. These additions must be regarded as

\work in progress" though, meaning that they can still be modi�ed before the new standard is o�cially

released. Part of HTML 4.0 are the cascading style sheets, which are discussed in an extra section of this

chapter. The text continues with an outlook on HTML commands for guiding users through world{wide

web documents. These tags

4

have been suggested by [Lai et al., 1995] in the article \Toward A New

Educational Environment". Finally, the chapter concludes with an overview of the advantages and

disadvantages of the new HTML commands in regard to tutorial systems.

3.1.1 Netscape's Layers

The competition between the two major world{wide web browser producers, Netscape and Microsoft,

has frequently led to proprietary HTML commands, which were only understood by only one browser.

The competitor's product just ignored them or did not display them correctly. Therefore, the use of

proprietary tags is generally not recommended, because a large group of users may have di�culties with

them. The new LAYER command by Netscape unfortunately belongs to the HTML tags, which must

be rated as being problematic. With the upcoming HTML 4.0 standard it will also be replaced by a

similar concept in cascading style sheets. So why do I introduce the layering technique here? The current

HTML 4.0 draft is still a \work in progress", so the substitute for layers may disappear in the upcoming

publications. Yet layers are very useful in designing a more intuitive layout for HTML documents.

Especially in a tutorial system the presentation of information plays an important role (see Section 4.3.1).

Up to now, images were rendered in documents according to their position in the HTML code. This

technique is also called \
oating", as the image positions depend on the surrounding text only and

cannot be �xed. Many world{wide web content designers regarded that as a problem and used the TABLE

command or invisible images

5

as placeholders. The method is not very elegant, as the HTML code will

get more complicated and di�cult to maintain. Also the results often looked di�erently in other browsers.

The layers on the other hand have �xed positions in the world{wide web page, and they can be set by the

developer to overlap with remaining document texts or not. The positions can only be changed with a

function written in JavaScript, whose basic concepts are described in Section 3.5.1. For example, a simple

animation is programmed by setting the x{axis value of a layered image from left to right continously.

Especially in a tutorial system, layers may be applied to point out ideas or to hide solutions from the

student. A workable example can be found in the articles by [Burns, 1997]. Unfortunately, the following

disadvantages disapprove the use of layers:

� Finding the right position for layers may require some attempts. If layers are not supposed to

3

Strictly speaking, an anchor is the object which is the end point of a link (source or destination), and which contains

the information to enable the system to locate a persistent selection within a node ([Hall et al., 1996]). In HTML the

terms anchor and link are used interchangeably though.

4

\Tag" is a synonym for \HTML command".

5

An image which is invisible to the user with the help of transparent colours. The document text will
ow around the

boundaries of the image nevertheless.

22 Hypertext Markup Language Extensions [Section 3.1]

overlap with the document text then extra space in the size of the image must be reserved by the

developer in the document code.

� Only Netscape's Navigator 4.x is capable of displaying layers. Other world{wide web browsers

will ignore the layer tag, but unfortunately not the image tags. So, all the images, which were

supposed to be layered, will be shown at once, consequently often making the document unreadable.

� The layer tag will not be supported by the HTML 4.0 standardisation commitee.

The following section on cascading style sheets will show the bene�ts of a layering technology in layout

design, but unlike Netscape's layers, moving positioned style sheets is not yet supported. Instead simple

animations must be written in Java, which will require more programming skills. Luckily the W3C

6

document object model working group is currently focusing on dynamic aspects of HTML, which will

include moving rendered document objects on a web page. [Furman & Isaacs, 1997] discusses that

topic in detail.

3.1.2 Cascading Style Sheets

Cascading style sheets, which are abbreviated as CSS, are actually part of the new HTML 4.0 speci�-

cation, but their new possibilities to de�ne layouts for world{wide web pages require a chapter on their

own. [Raggett et al., 1997] writes on the use of style sheets:

Style sheets simplify HTML markup and largely relieve HTML of the responsibilities of presentation.

They give both authors and users control over the presentation of documents [. . .]. Before the advent

of style sheets, authors had limited control over rendering.

Style sheets can be de�ned by both content providers and world{wide web users. Their representation

language, which has adopted characteristics of object{oriented programming like the hereinafter dis-

cussed pseudo{classes, controls the appearance of each HTML tag by assigning layout preferences, like

colour or font size, to the properties of an HTML command individually. In document texts the modi�ed

HTML tag is used as in previous HTML versions, but it will now be displayed according to the settings

in the cascading style sheet. Therefore, the layout and the contents of a world{wide web document can

be separated from each other again. This is regarded as a breakthrough and expands the abilities of web

page designers, who were getting more and more frustrated by the previous limitations of HTML. As

already mentioned in Section 3.1.1 content providers tried to sidestep the stylistic limitations of HTML

by using tables or images. Although the intentions to improve presentation in this way were good, some

documents became unreadable for many user. [Raggett et al., 1997] remarks that style sheets:

[. . .] bring back the ease of control over presentation [. . .]. Style sheets make it easy to specify the

amount of white space between text lines, the amount lines are indented, the colors used for the text

and backgrounds, the font size and style, and a host of other details.

For tutorial systems this means that the layout of exercise pages etc. can be freely designed now. For

example, a style sheet, which can be loaded from an external �le and shared by many HTML pages, is

able to set a default to display information, e.g. text segments that appear in more than just one page,

equally. By this visual support the instructor is able to focus the student's attention to the main topics

or goals of a course. As style sheets can also be de�ned by the world{wide web users, a student will have

6

World{wide web consortium.

[Chapter 3] Techniques 23

the opportunity to control the layout on his own, concentrating on his individual and personal needs.

The rules of con
ict resolution, whether the author's or student's CSS design outlines are chosen for

displaying, can be found in [Lie & Bos, 1996]. I recommend to use the important command, which

increases the weight of a style in case of a con
ict, responsibly: this will deny users the opportunity of

overriding the author's settings. There are two main reasons for cascading (see [Lie & Bos, 1996]):

� Reducing redundancy

Style sheet de�nitions which have been stored in separate �les can be individually combined by the

world{wide web page designer.

� Author/reader balance

Authors, but also readers, have equal rights to in
uence the presentation of world{wide web pages

through style sheets. Both use the same de�nition language, thus continuing a tradition of the

world{wide web that allows everyone to publish there.

A style rule consists of two parts: selector and declarations. In general, the selector is an HTML tag,

whose property values are declared within curly brackets. If an HTML command is set between a start

and end tag of another HTML command, it will inherit the styles of the surrounding element. Classes can

be de�ned by adding a class name to those HTML tags which belong to that class. They are supposed to

increase the granularity of control over elements, but: \CSS gives so much power to the CLASS attribute,

that in many cases it doesn't even matter what HTML element the class is set on | you can make any

element emulate almost any other [Lie & Bos, 1996]."

Another technique is introduced by pseudo{classes and pseudo{elements. With them, external informa-

tion can in
uence the appearance of HTML tags. For example, the status of an HTML anchor, which

is link (unvisited), visited or active, is regarded as being external; that means it depends on the

user's previous behaviour. The di�erence between a pseudo{class and a pseudo{element is that pseudo{

elements are part of CSS elements (like the �rst line of a paragraph), whereas pseudo{classes represent

di�erent types of elements (like the various states of an HTML anchor, see [Lie & Bos, 1996]). To get

familiarized with the subtle distinction I will use an example from object{oriented programming: the

class \car". A car consists of a motor, doors and windows. These are the sub{parts of a car and in CSS

known as pseudo{elements. On the other hand, a car can be produced by more than one manufacturer.

So, there will be di�erent types of cars. In CSS words the class car would then be called pseudo{class.

In our real{life example the external in
uence, which controls the use of pseudo{classes and elements,

could be the bank account: it certainly speci�es what car model we can a�ord. The pre�x \pseudo" is

used to separate these CSS elements from the previously mentioned HTML classes: pseudo{classes and

elements do not exist in the HTML code, which also means that they cannot be referenced like normal

classes in the document. Actually they do not have to: as I said before the choice which pseudo{class

or pseudo{element is currently valid for an HTML tag solely depends on in
uences outside the HTML

document, and not on its position in the document structure.

Each HTML element which is used within a cascading style sheet is placed into a invisible rectangular

box, whose core content area and the optional surrounding padding, border, and margin areas can be

de�ned by the developer. These format settings control the relationship to the other element boxes

and the remaining document data. Such a box must still be seen as a
oating text element of course,

whose appearance and contents are solely speci�ed by the developer, but not the exact location. In

[Lie & Bos, 1996] many examples can be found addressing the issues of the formatting model. Another

important functionality of cascading style sheets is introduced by [Furman & Isaacs, 1997] with the

following words:

Designers want to explicitly control the position of HTML elements to produce rich, static HTML

documents. They also want powerful layout control to enable dynamic, animated HTML{based

content. [. . .] relative positioning allows elements to be o�set relative to their natural position in the

document's
ow, and [. . .] absolute positioning allows elements to be removed from the document's

ow and positioned arbitrarily [. . .]. Dynamic aspects of managing positioned elements, such as

24 Hypertext Markup Language Extensions [Section 3.1]

hiding, displaying and movement can only be performed using an external scripting language.

In contrast to Netscape's layers, where images are the only dynamic objects, CSS text elements can be

freely positioned on a world{wide web page as well. Other positioning properties include:

� Visibility

The developer can choose if a CSS text element is visible or not. In a tutorial system this func-

tionality can be used to hide solutions or further explanations from the student in order to present

these when necessary.

� Layering order

It de�nes in which order elements are stacked upon each other. For example, it is also possible to

lay text over images.

� Over
ow

If the contents of a positioned element exceed the reserved space, whose boundaries were declared

with �xed or absolute values, the behaviour of the world{wide web browser must be speci�ed. For

example, a scrolling mechanism could be used to access the remaining data.

Many examples on behalf of positioning are found in the W3C draft by [Furman & Isaacs, 1997],

but I must emphasize that the standardisation process is still in an early state. For tutorial systems

positioning provides the most promising outlook. Pages are better structured and document data can be

hidden or made visible adaptively. The latter techniques will require a scripting language like JavaScript

though, but HTML alone is already gaining more and more in
uence on the user{friendly design of

electronic textbooks or static HTML pages. According to [Lie & Bos, 1996] the goal has been to create

a simple style sheet mechanism for HTML documents. The current speci�cation is a balance between the

simplicity needed to realize style sheets on the web, and pressure from authors for richer visual control.

CSS does not o�er pixel control or a layout language, which includes multiple columns with text{
ow or

overlapping frames. Also CSS is not expected to evolve into a programming language.

3.1.3 Hypertext Markup Language Version 4.0

After explaining the new layout possibilities, I will now have a look at the remaining features that the new

HTML 4.0 standard will introduce. Here, I will focus on commands which are important for the design of

tutorial systems. As there will be more modi�cations compared to the currently used HTML versions, I

recommend the documents by [Raggett et al., 1997] be read for further information. Again I would

like to emphasise that the reference is a W3C working draft for review by W3C members and other

interested parties. This document may be updated, replaced or obsoleted by other documents at any time.

Until now links are generally used to visit web resources, but authors often wish to express other rela-

tionships as well. For this reason, HTML 4.0 provides new link types which help to describe the position

or function of a document within a series of other documents. Among the many new types the most

important are:

� stylesheet

The link refers to an external style sheet. Together with the link type alternate which denotes

substitute versions of a document the user will be able to select an alternative style sheet. For

instance, the web browser may o�er a pull{down menu listing all the alternatives.

� start

It denotes the �rst document in a collection of documents. Currently tutorial system developers

often use buttons in their HTML documents to achieve the same functionality. In the future, web

browsers may be responsible for that.

[Chapter 3] Techniques 25

� next or previous

It refers to the next or previous document in a linear sequence of documents. Web browsers may

choose to preload the next or previous document to reduce the perceived load time. The use in

tutorial systems may be limited though, as the next pages often depend on the student's answers

in the current exercise.

� contents, index, glossary, appendix, and help

These are very useful link types to direct the users straight to the desired documents. For example,

index and glossary lead to an index and glossary of the current document, respectively.

� chapter, section, and subsection

They refer to documents serving as chapter, section or subsection in a collection of documents. In

a tutorial system these may be helpful in guiding a student through the course.

There is no intention to display links that are speci�ed by the new HTML command LINK and the types

above, together with the contents of the remaining document text. Instead, world{wide web browser are

allowed to render these in other ways, for instance as navigation tools or menu buttons. Another idea is to

use the new hierarchical link types as a guide to print a series of HTML documents as a single document.

In particular, certain HTML documents can be speci�ed to serve as a table of contents or an index (see

[Raggett et al., 1997]). Unfortunately the proposed link command does not support one{to{many

links which are quite common in other hypertext systems like Microcosm ([Hall et al., 1996]). There,

one source anchor is connected to more than one target document, which can then be selected from a

menu. In my opinion there are no disadvantages against the use of one{to{many links in the world{wide

web, except for more di�cult link management. The missing link management in the world{wide web

also makes the implementation of generic links impossible. [Hall et al., 1996] says on behalf of generic

links, that they:

[. . .] enable the destination of a link to be resolved at run{time calculated on the basis of the content

of a source anchor rather than simply its location in a document (p7). [. . .] A generic link de�nes

how to get to a document, not where to go from it (p108).

Again HTML 4.0 misses the opportunity to add generic links to the world{wide web, but implementing

this concept is more complicated than one{to{many links as it will require the use of an external

database or program (for example, with Hyper{G or Common Gateway Interface (CGI) programs.

For an introduction to the latter see Section 3.4.1). Other HTML extensions have been made for

world{wide web forms which are used to accept user input that can be processed by external programs

(often Common Gateway Interface applications). These changes are mainly in the �eld of structuring:

thematically related form controls, like checkboxes or radio buttons, can now be grouped together, so

their purpose is more easily and quickly understood by users. Future plans include speech navigation

of form controls to make documents more accessible for people with disabilities, however any user will

bene�t from this. Form controls are generally able to trigger user events, which are then processed

by functions that are written by a system developer. The list of user events has been extended: they

cover user actions, like changing the contents of a control item or mouse clicks, and the often needed

events mouse-move and key-press. Of course, this functionality can only be used in conjunction

with a scripting language like JavaScript, so further details will be mentioned in Section 3.5.1. In

respect to HTML the new commands alone will de�nitely improve the appearance and user accep-

tance of the world{wide web. However, additional link types will still be needed to gain a reference

structure which is more suitable for education. [Lai et al., 1995] suggests these HTML commands

in his article \Toward A New Educational Environment" which will be introduced in the following section.

3.1.4 Toward A New Educational Environment

In their project [Lai et al., 1995] constructed a new educational environment, in which cooperative

learning and teaching can be provided regardless of a student's location or time of access, by using the

26 Hypertext Markup Language Extensions [Section 3.1]

world{wide web as their underlying medium. Despite the bene�ts the world{wide web provides, like

accessibility and simplicity in creating web pages, they had the problem that students were often \lost{

in{hyperspace". A standard world{wide web browser just allows learners to go back or forward in pages

that have already been visited, but this functionality is too limited for a tutorial system. In addition,

the students regularily missed documents, because they did not know of their existance, and therefore

could not �nd them (see [Lai et al., 1995]). In order to �nd a solution they came up with the idea to

use new HTML tags which were supposed to better organise the documents of a course. Currently an

external program is responsible for giving the student an overview map and some guidance to the course

by analysing the new HTML commands, but its functionality could also be included into a web browser

one day. The recommended HTML tags are:

� <PARENT HREF=`̀ ...''>

This organisation link is put in the child document to point to the parent document. Actually the

idea behind this tag is very similar to the link types chapter, section and subsection, which are

mentioned in section 24, but the implementation of HTML 4.0 will have to show that before any

comparisons can be made. At the moment, the organisation link provides a simple way to tell the

user, from which document the current text is derived. In this way the number of levels or ancestors

is not limited.

� <CHILD HREF=`̀ ...''>

This HTML tag is very similar to the parent link above. As its name suggests it will be put into

the parent document to point to the child document. The tutorial system uses this information to

generate a tree structure of all the documents in a course. Consequently, this can be used to point

out the student's current location in a course at any time.

� <PREREAD HREF=`̀ ...'' LEVEL=`̀ ...''>

Content providers can specify the HTML documents, which must be read before the current HTML

page. Otherwise the student will not have the possibility to access the document. Unfortunately

this tag has no equivalence in the current HTML speci�cations, although its advantage for tutorial

systems is obvious: students will not be able to get to advanced subjects before they have read

all the introductory texts. To achieve this, the web browser is responsible for storing a history of

all accessed pages and the history list must not be deleted before the course is �nished. In Lai's

work this is currently done by an external CGI program called guider. If a student activates the

guider, it will monitor the learning path of the student. For instance, if the student tries to access

advanced documents, the guider will respond with a list of HTML pages that contain preliminary

information. With the level argument the lecturer is able to control what documents shall be read

by novices, intermediates or experts. This may help to create a tutorial system which presents users

the most suitable documents in respect to their knowledge state.

Additionally Lai's guider also records the learning history of all users, so if a student has a problem

he can ask who has read the documents before. Then the guider will return a list of names and email

addresses. Both students, the novice and the expert, will bene�t from this: novices get explanations by

fellow students, while skilled students learn how to express their knowledge (also possible in a cooperative

work area, see Section 4.3.2). The ideas introduced by [Lai et al., 1995] are very useful for tutorial

systems. They especially help the developer to control the order in which documents are accessed by

students. With web browsers currently available this must still be done externally, so the developer is

required to have programming skills in a scripting language at least.

3.1.5 Discussion

This discussion is solely based on the advantages and disadvantages of HTML 4.0 and CSS for tutorial

systems without any extensions like plug{ins, scripting languages or Java applets. Although these tech-

niques rely on HTML, their bene�ts are mentioned in the following chapters. With the help of HTML

implementing an exploratory learning environment is possible, but the hypertext system itself cannot

o�er any adaptive control of the students' activities.

[Chapter 3] Techniques 27

+

Integration

In general, HTML 4.0 is the basis for world{wide web documents, so all the techniques, which

are introduced in this thesis, depend on it (except for stand{alone Java programs). Therefore,

plug{ins, CGI programs, JavaScript functions, and Java applets can be integrated into HTML 4.0

documents. For a tutorial system I recommend using this possibility in order to present an individual

and interactive environment to the student.

+

Standard

World{wide web users and developers can rely on a single standard, which is generally accepted by

the browser manufacturers, for writing and accessing world{wide web documents. HTML 4.0 even

o�ers the opportunity to implement a common document structure on the web with the help of

the new link types. For example, if a browser renders these types in the form of a pull{down menu,

the user will immediately be able to select the \table of contents" of a series of documents in all

the world{wide web sites which apply the new link types in their pages. In addition, HTML 4.0 is

compatible to previous versions.

+

Local

HTML documents can be downloaded and stored on disk by the students. Therefore, a permanent

connection to a world{wide web server is not necessary. Consequently, the work load on the server

is reduced, and a slow internet connection, for example by modem, does not in
uence the usability

of the system.

+

Portability

In general, HTML 4.0 is platform{independent, but for each operating system or computer architec-

ture a browser which can interpret the new HTML 4.0 commands must exist. Netscape's Navigator

and Microsoft's Internet Explorer partly support HTML 4.0, but their implementations di�er from

each other. However, this will certainly change in future releases.

+

Author/reader balance

CSS o�ers the possibility of overwriting the author's style sheets. Thus, students can set their own

preferences for rendering documents.

+

Structure

With the help of CSS, structuring world{wide web documents becomes easier, for example a common

layout can be de�ned for a series of documents. In addition, the separation of layout and document

contents is possible.

�

Availability

At the time of writing HTML 4.0 is still a \work in progress", so it is not yet fully implemented in

current world{wide web browsers.

�

Interactivity

HTML 4.0 does not o�er any form of interactivity for the learner. The new event types are only

available if event handlers are written in a scripting language. Consequently, if a tutorial system is

solely implemented in HTML 4.0, the student and the system mostly work independently of each

other.

�

Link management

The new HTML 4.0 standard does not include a better link management or one{to{many links.

This functionality can only be achieved if an external program, like CGI, is used. In addition,

the new HTML commands mentioned in Section 3.1.4, which provide an easy method of de�ning

dependencies between documents, will not be standardised in the near future.

3.2 Knowledge{Based Hypertext Transfer Protocol Server

Many knowledge{based systems have been implemented during recent years, and their research is still

playing an important role in computer science. Unfortunately, these systems often lack the possibility

to be universally accessible, as they were mainly planned for stand{alone usage. On the other hand the

28 Knowledge{Based Hypertext Transfer Protocol Server [Section 3.2]

world{wide web provides global access by de�niton, but it lacks the intelligent methods to store, retrieve,

analyze, �lter, and present information. The idea was to combine the two techniques to strengthen

the links between arti�cial intelligence researchers and the distributed hypermedia community. In the

following sections I will introduce the result of these partnerships, the Common Lisp HTTP server

7

. I

will start with the programming language Common Lisp, its embedded object{oriented programming

language CLOS and the presentation systems CLIM and W3P. Furthermore there will be a short

overview of the hypertext transfer protocol HTTP, before the Common Lisp HTTP server is discussed.

As this master's thesis is concerned with the possibility of adapting tutorial systems to the world{wide

web, I will present an example which has combined an already existing tutorial system with the Common

Lisp HTTP server. Finally the chapter concludes with a summary of the advantages and disadvantages

of the proposed technique.

3.2.1 Common Lisp

Lisp is a programming language, which [Keith, 1997] introduces in his lecture by citing Edsger Dijkstra:

Lisp has jokingly been called \the most intelligent way to misuse a computer". I think that

description is a great compliment because it transmits the full
avor of liberation: it has assisted a

number of our most gifted fellow humans in thinking previously impossible thoughts.

According to [Keith, 1997] the advantages of Lisp are: weak variable typing, a simple syntax, and

programming environments resulting from 30 years of arti�cial intelligence research. Lisp itself is an

interpreted language, which makes interactive testing possible, and it provides many facilities for symbol

8

manipulation, which is a key aspect of arti�cial intelligence. In addition, symbol manipulation is especially

needed for building interpreters and compilers for other programming languages. Common Lisp is the

o�cial Lisp standard, and has currently gained the most in
uence. [Mallery, 1997] thinks that Common

Lisp is one of the best available choices for developing a �ne{grained vocabulary of operators (functions)

that programs and software developers share. Due to a modularized structure operators do not have to

be written again, and can be called by any program. This leads to high productivity because:

� Abstracted code is easily evolved as requirements change.

� Only compiling the newly added operators speeds development of large programs and facilitates

evolutionary programming.

� A vocabulary of operators is build up and used in solving similar problems.

With structured and well{designed software development the same level of productivity is reached with

any programming language, but in function{compositional languages like Common Lisp it is inherently

encouraged ([Mallery, 1997]). Common Lisp contains a native object{oriented programming language,

which is called CLOS

9

. Like many other object{oriented languages CLOS encourages the software

developer to design
exible program modules for code sharing. It also supports multiple inheritance,

virtual functions, and argument matching, which is necessary if functions with the same function names

exist. Modern Common Lisp contains a high{level window system tool, the Common Lisp Interface

Manager CLIM, which is written in Common Lisp and uses machine{independent abstractions to de�ne

window interfaces. In the �nal system these abstractions are replaced by speci�c GUI code, so the

look and feel of an user interface does not change. An important CLIM abstraction is the presentation

system which controls how the user perceives Lisp objects. The presentation system consists of various

presentation types which specify the class methods for each object. These class methods are responsible

for displaying and accepting an object or receiving user input ([Mallery, 1997]):

7

Abbreviated as CL{HTTP server.

8

A symbol is a physical entity, often just called entity.

9

Common Lisp Object System.

[Chapter 3] Techniques 29

In general, presentation types specialize built{in or constructed Lisp types. Presentation translators

can be de�ned to convert from the Lisp object associated with one presentation type to another

[. . .]. Once de�ned, these presentation types mediate all data entry and display, and thus, users

perceive only the external, user{friendly representation, and never the internal representation.

CLIM acts as a translater between the abstract but independent user interface de�nitions and the

system speci�c window commands. As this technique is not limited to traditional window systems, we

can also adapt it to the world{wide web: if HTML code is returned, the user interface can be displayed

in a web browser. Although CLIM is more
exible than the world{wide web user interface, it can also

be con�gured to function in a stateless model like the world{wide web. There it must work without a

persistent connection to the user, and regard the performance requirements of a server. Due to these

restrictions, W3P was introduced, which Christopher Vincent describes as:

[. . .] an abstract, extensible Common Lisp system for manipulating input and output as CLOS

objects, allowing simpler applications with less code duplication. To facilitate compatibility with

existing LISP applications, W3P implements a subset of the Lisp interface to the Common

Lisp Interface Manager [. . .]. W3P represents an e�ort to create a streamlined, highly portable,

non{proprietary presentation system [. . .].

The W3P system cannot replace CLIM, because many capabilities of CLIM do not have an equivalent in

the world{wide web, but on the other hand, these missing functionalities do not become an unnecessary

overhead. The W3P system uses the CLOS class inheritance, so presentation views can be de�ned that

are specialized on di�erent content types or styles. The same idea is used in the W3P condition and

error handling: for instance, applications require di�erent responses for input errors, so either the user

is asked for the missing input data or the system proceeds without an error message, and therefore

saves valuable network and server resources. Consequently, W3P is especially valuable for HTML form

processing, because through its design it allows a dynamic and
exible interface that is individually

generated and parsed for each user. Due to class inheritance an application can exactly specify what

user input is required whenever an error has occured. Future plans for W3P include more powerful

user interfaces on the world{wide web as well as client{side extensions, which allow preliminary validity

checking of user input. The latter can, for example, be done with the help of JavaScript, which will be

discussed in Section 3.5.1.

The proposed ideas and abilities are not solely restricted to Lisp and its derivatives. In my opinion

it is possible to adapt the discussed object and presentation models for any programming language

by carefully keeping the underlying design, i.e. modularity and abstraction, in mind. However, the

availability of Lisp and the wide{spread use and experience in arti�cial intelligence research make Lisp

an important option for tutorial systems.

3.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol, abbrievated as HTTP, was established in 1990 and is now the most

wide{spread application{level protocol for distributed, collaborative, hypermedia information systems.

If someone is talking about a world{wide web server, the underlying protocol is almost certainly HTTP.

The �rst version of HTTP was a simple protocol for raw data transfer across the internet, but in the last

few years the protocol has been improved. Now it allows messages to contain metainformation about

the data transferred and modi�ers

10

on the request and response semantics. To locate a resource in the

internet HTTP uses Uniform Resource Identi�ers (URI), which are often given as a location (URL)

or a name (URN). The paper by [Internet Engineering Task Force, 1997] describes the overall

operation of HTTP as follows:

10

For instance, for special requirements of cache behaviour.

30 Knowledge{Based Hypertext Transfer Protocol Server [Section 3.2]

The HTTP protocol is a request/response protocol. A client sends a request to the server in the

form of a request method, URI, and protocol version, followed by a MIME{like message containing

request modi�ers, client information, and possible body content over a connection with a server. The

server responds with a status line, including the message's protocol version and a success or error

code, followed by a MIME{like message containing server information, entity metainformation, and

possible entity{body content.

The HTTP protocol is usually above the transport protocol TCP/IP, which is responsible for a

connection{oriented and reliable transport of data frames. However, any other transport layer protocol

can be used as long as the quality of service is similar to TCP/IP. Nevertheless, it is the responsibility of

HTTP to o�er a highly reliable communication channel, or failing that, a reliable indication of failure.

New extensions to HTTP, that are focused on education, are suggested by [Ping{Jer et al., 1996] in

the article \Synchronous Navigation Control for Distance Learning on the Web". Up to now web devel-

opers tried to restrict the pedagogical limitations of the world{wide web by using guided tours, overview

maps etc., but these help tools were solely for the bene�t of the student instead of addressing the whole

instructor{learner relationship: \[. . .] they [instructors] merely construct course material, put them on the

WWW, and then go behind the scenes, providing little positive aids to learners. Therefore, instructors are

absent from the actual learning progress of learners." The new solution is now to provide a way in which

the instructor can interact with the learner by guiding the student's navigation behaviour in the course

directly. Therefore, the student gives the control of world{wide web document retrieval, browser window

scrolling, mouse positioning and highlighting of texts to the lecturer, who on the other hand can decide

whether he wants to advise one or many learners simultanously. The extent of navigation control must be

balanced between the student and the lecturer, so the learner is involved and as a result highly motivated.

Forcing the student to watch mouse movements and scrolling, thus reducing him to a passive role, is

therefore not advisable. Since communication in this category involves WWW servers, HTTP is used for

underlying message transmissions. The protocol speci�cation can be found in [Ping{Jer et al., 1996].

The advantages of this technique are obvious: the tutor can show the user directly what he has to do,

where the key problems are, and how he should start. This is very similar to classroom instruction, but

there is no longer a need to have tutors or lecturers on{site. The developer of a tutorial system, which

is based on CL{HTTP, can easily extend the CL{HTTP functionality to support navigation control as

the server is programmable and the source code is freely available. Unfortunately most world{wide web

browsers will not understand the navigation control requests (like the HTML extensions of Section 3.1.4).

As we can see, the work on the HTTP standard continues, however with less emphasis on educational

issues than on security, caching, and connection handling. For the latter, HTTP 1.1 introduces the

possibility to use a connection for more than one request{response exchange: previously a new connection

was built up for each data communication and was immediately terminated afterwards. The new \server

push"

11

however will keep the connection open, and so it will be interesting to see whether this new

functionality will make possible the e�cient use of CLIM for the world{wide web.

3.2.3 Common Lisp Hypertext Transfer Protocol Server

The Common Lisp HTTP server was specially designed by John Mallery at the M.I.T. to link arti�cial

intelligence applications written in Lisp to the world{wide web. As knowledge{based systems often build

the core of a tutorial system this HTTP server may be used as an external extension to provide tutoring

and education over the internet. According to [Mallery, 1997] the main intentions to develop the

CL{HTTP server were:

� High{productivity programming

As a functional language Common Lisp o�ers advantages which have already been described in

Section 3.2.1. In addition, most of the systems that John Mallery was using had been written in

Lisp before, so choosing the same language for the HTTP server was a feasible decision. So, if the

existing research systems grow, the possibilities of the server can therefore evolve as well.

11

See [Netscape Developer, 1997c] for a detailed description.

[Chapter 3] Techniques 31

� Multiple transport media

John Mallery needed a technology which was able to work with di�erent transport media, like email

or HTTP.

� Automatic form{processing

The research team at the M.I.T. had already gained some experience in automatic form{processing,

so the same functionality was implemented in the server. Consequently, for system developers the

often repetitive tasks of form{processing were reduced as well.

� Dynamic HTML generation

The output of the research systems had to be processed for each user individually, so methods for

exible, dynamic, and adaptive world{wide web page generation were required and integrated.

For John Mallery programming the server in Common Lisp was the most suitable solution. Lisp makes a

�ne{grained vocabulary of operators possible, and can be quickly adapted to changing HTTP protocol

standards. It allows rapid{prototyping and possesses datastructures that go beyond those available in

scripting languages for computing and processing HTML forms. As user interaction with a tutorial

system requires HTML forms for input, the latter point was essential. Additionally the appearance

and the acceptance of a tutorial system depends on its user interface, so complex form processing by a

fully{featured programming language is recommended. The CL{HTTP server contains all the important

features of other HTTP servers or the HTTP 1.1 standard, so it is a powerful substitute and does

not restrict the potential user base. It supports for example, all major HTTP methods like GET and

POST, Java and JavaScript, client{side plug{ins, logging, and network security based on clients' IP

addresses. Thanks to the object{oriented implementation with CLOS, generic operations can be de�ned

for handling error conditions, or URL and server objects. In addition, W3P simpli�es creating user

interfaces in the world{wide web, because its presentation types describe all the data types which are

either presented or received from the user.

In general, the system developer must write Common Lisp functions for computing responses to incoming

HTTP requests. These functions reply to the HTTP methods GET or POST and arrange the appropriate

status codes and headers, which are then returned to the client. The continuous development of the

CL{HTTP server has already led to Common Lisp functions for handling Cookies

12

, HTML meta infor-

mation

13

, and connection control, e.g. maintaining a connection to the client. Every HTTP request creates

an instance of the class SERVER which stores all the information relevant to the transaction. Special care

must then be taken with responses: as CL{HTTP can answer multiple client requests simultaneously,

collisions must be prevented while accessing a shared resource.

3.2.4 Example: Episodic Learner

One application which has been based on the CL{HTTP server is the Episodic Learner Model Adaptive

Remote Tutor, abbreviated as ELM{ART. It is a tutorial system which is used in an introductory Lisp

course at the Universit�at Trier in Germany. According to [Weber & Specht, 1997] ELM{ART is

based on ELM{PE, a previous application that was restricted to a small user group by its size and its

platform{dependent user interface. Unfortunately it was not possible to adapt the existing system to the

world{wide web directly, so with the help of the CL{HTTP server the web based version \ELM{PE" was

introduced. Like its predecessor it supports example{based programming, intelligent analysis of problem

solutions, and advanced testing and debugging facilities. ELM{ART has been updated since and is now

available as version ELM{ART II. One of its design features is to store an individual model for each

learner, which is updated automatically when a student accesses the tutorial. In the system itself pieces

of information, for example texts or concepts, are structured in slots, which are called dynamic if they

depend on the learner model. The other types are: static slots for prerequisites or related topics, test

slots for describing a group of test items and problem slots for de�ning a programming problem. These

information slots are used to build up units, which are then organised like a textbook into lessions,

sections or terminal pages. When the student is working with the tutorial system, the individual learner

12

Persistent client{state HTTP information, see also Section 3.5.2.

13

Special header information, often used for \client pull" as described in the document [Netscape Developer, 1997c].

32 Knowledge{Based Hypertext Transfer Protocol Server [Section 3.2]

model will guide him by using \tra�c lights" | the colours red, yellow and green | as a metaphor to

annotate units or links in the table of contents adaptively. Therefore the units to be learned or visited

next are suggested for each student according to his current state of knowledge. Additionally a technique

called individual curriculum sequencing was introduced for situations when:

[. . .] users may be confused about what the best next step should be to continue with the course.

This may happen when the learner moves around in the hyperspace and loses orientation. Or, the

learner wants to follow an optimal path through the curriculum in order to learn as fast and as

completely as possible. To meet these needs, a NEXT button in the navigation bar of the text pages

allows the user to ask the system for the best next step depending on the current knowledge state of

the particular user ([Weber & Specht, 1997], p8).

Thanks to the CL{HTTP server ELM{ART is accessible by users all over the world, but how do the

two systems work together? Gerhard Weber answered that question in an electronic mail. He wrote that

the interaction between ELM{ART and the CL{HTTP server was rather simple as all the code was

written in Lisp and controlled by the server. Therefore no connections to any other applications had to

be established. The information stored in the individual learner model was used to create HTML pages

by calling Lisp functions, so except for start or welcome pages no other HTML pages were needed in

their courses. All pages that were sent to the client were solely generated within the CL{HTTP server.

3.2.5 Discussion

The main feature of the CL{HTTP server is the integration of existing knowledge bases written in Lisp

into the world{wide web, so these can universally be accessed by the students.

+

Availability

As the source code of the CL{HTTP server is written in Common Lisp it can be implemented on

platforms for which a Common Lisp compiler is available. This includes Windows, Apple, Unix etc.

+

Integration

According to [Mallery, 1997] the CL{HTTP server o�ers the support of client{side plug{ins,

JavaScript, and Java. In addition, it implements the form methods GET, POST etc. which are required

for the CGI program interface, but also used by Common Lisp functions to compute responses to

incoming HTTP requests. Consequently, world{wide web documents can be dynamically generated.

+

Extension

The CL{HTTP extends the world{wide web providing the possibility of including knowledge{based

systems which are frequently used for tutoring systems. Modi�cations to existing systems written

in Lisp are reduced to a minimum, as the server itself uses this programming language. In addition,

the server can also be extended by system developers as the source code is freely available.

+

Standard

The Common Lisp language is standarised and the CL{HTTP functions, which are included to

process the students' requests and responses, are developed by the M.I.T., so the programming

interface is essentially available from a single source.

�

Future releases

The CL{HTTP server is developed at the M.I.T., so it could happen that new HTTP standards or

extensions may not be included in the CL{HTTP releases, but as the source code is freely available,

these modi�cations could be made by a tutorial system developer.

�

Programming experience

Development and integration of knowledge bases requires programming experience in Lisp.

[Chapter 3] Techniques 33

�

Local

The CL{HTTP server must collect the students' requests, query an underlying knowledge base,

and compute the responses which are then returned to the clients. The work{load of a server is

therefore high.

3.3 Authoring System and Courseware Plug{In

The �rst releases of world{wide web browsers were restricted in the data types they could display

within their document window

14

. At the beginning of the internet these were regular HTML texts and

.xbm

15

and .gif

16

image formats, whereas all other types of information had to be viewed with the use

of external programs. Obviously this technique is not desirable for an easy{to{use and intuitive user

interface: beginners had problems in setting the correct parameters for external programs, inline data

and external data were displayed separately from each other, and vital system resources were necessary

to call the external program, especially if the program was just required to display data. Soon the

browser manufacturers came up with the idea of setting a standard to extend the abilities to present

data in the browser window, without the previously mentioned disadvantages. This standard could be

used by any software developer then to design lean program modules, called plug{ins, for making any

type of information available to the world{wide web community without the need of external viewers. In

the following sections I will introduce the general ideas behind these plug{ins, then focus on those which

were especially written for computer{aided education, and conclude with an example and a summary of

the advantages and disadvantages of plug{ins.

3.3.1 Plug{In Basics

I will explain the concepts of plug{ins based on the documentation and API

17

by

[Netscape Developer, 1997b], especially as writing plug{ins for Microsoft's Internet Explorer

is also supported by the same software package as well. Whether an API of one browser manufacturer

supports all the functionalities of the competitor's counterpart may be questioned though. Nevertheless

I assume that the observations mentioned in this chapter are easily adapted to a competing product by

a professional plug{in developer. As explained in the introduction, a plug{in is a separate code module

that behaves as though it is part of a browser. By using the API the intention is to increase the number

of data types that are supported by a web browser. Firstly, this replaces external viewers because data

can be displayed within the browser window now, but secondly, these extensions make a more
exible

and interactive user interface possible. Therefore, it is clear that a plug{in developer needs full control

of the web browser itself. All the internet functionalities such as obtaining data from the network

by using URLs, must be supported as well as the receipt and handling of events triggered through

user interaction. In addition, there must be methods to display data in the browser window. Custom

made C/C++ functions help the developer by working with URL streams, web browser controlled

memory allocation etc., so basically the programmer must decide what services he wants the plug{in to

provide and which MIME

18

type and �le extension it will use. However, I must emphasize here that a

plug{in API is a native code library, this means that for each computer platform, on which a plug{in

is supposed to run, an own proprietary API is necessary. In this respect I would again refer to the

[Netscape Developer, 1997b] documentation, which contains all the signatures

19

and descriptions

of the provided API functions, sample implementations, and proposed plug{in development steps. The

advantages and disadvantages of the platform{speci�c and media type driven design are mentioned in

[Netscape Developer, 1997b], but nevertheless I will summarize the most important advantages

here:

� High performance because of native code implementation.

14

Data which is rendered within the browser window is also called \inline data".

15

X-bitmap �le format.

16

Graphic interchange format.

17

Application Programming Interface.

18

Multipurpose Internet Mail Extensions.

19

Signatures specify the name and the parameter types of functions.

34 Authoring System and Courseware Plug{In [Section 3.3]

� Speci�cally designed for extending the capabilities of a browser, so relatively simple and lightweight

modules can be used.

� Plug{ins can be written in C or C++ using existing development tools.

The last but one resulted from a comparison with interapplication architectures like OLE

20

and OpenDoc.

As most plug{ins support basic functionalities like displaying a special MIME type only, the lean code

is understandably preferred to the overhead of the standardised OLE or OpenDoc architecture. The last

argument however, which was made in connection with Java applets criticising that these require coding

in a new language with new development tools, is not clear to me: the language Java is only slightly

di�erent to C/C++, and the ways of programming are very similar. Despite the bene�ts of platform{

speci�c code, plug{ins inherit one severe disadvantage. In contrast to platform{native interapplication

architectures and platform{independent programming languages (see [Netscape Developer, 1997b]),

plug{ins cannot be simply transfered to other systems (intentionally?). Most companies, which develop

plug{ins, must therefore decide whether it is feasable for them to support systems other than the

wide{spread Microsoft Windows or Apple. So once more the prior intention of HTML and Java to be

universally understood is threatened by the use of proprietary concepts. Unfortunately, the two plug{ins,

which I will introduce in this chapter, do not run on any other system than Microsoft Windows or Apple,

and no alternatives are currenly available to make courses written with the two leading toolsets for

courseware production, Macromedia Director and Asymetrix ToolBook, accessible for world{wide users.

Although at Technische Universit�at M�unchen the targeted student group for a tutorial system is mainly

restricted to HP{UX or SunOS platforms, I will nevertheless discuss the possibilities of these educational

plug{ins as they provide a bene�cent technique for content providers to run their applications over the

internet, and in addition many students have their own Microsoft Windows PC at home.

After the user has downloaded a plug{in and installed it

21

, the world{wide web browser will be able to

use the new module from that moment on. How will the still separate code extension work together with

the browser? If the tags EMBED or OBJECT are found within an HTML page, a plug{in with a matching

MIME type is looked for. In case of a successful query the module code is loaded into the memory,

initialized, and a new instance of the plug{in is created. The time that a plug{in resides in memory is

solely controlled by the web page, and not by the plug{in itself. As long as the surrounding web page is

loaded, the plug{in will not be removed. In addition, multiple instances of the same plug{in are possible,

and consequently if the last instance is deleted, the browser will free the memory space previously

reserved for the plug{in code (see [Netscape Developer, 1997b]). Once a plug{in is displayed in the

browser window, it does not mean that it must work independently from the other objects of the web

page. In order to handle various multimedia contents and increase their capabilities, plug{ins can call

Java or use Java and JavaScript controls. They can also provide parts of their functionality to other

objects. The direct communication with Java and JavaScript (through a Java interface) is established

with the help of LiveConnect. The highlights of LiveConnect will be explained in Section 3.5.3 later on.

Since the �rst introduction of plug{ins the amount of written and installed code modules has steadily

grown, thanks to the ease{of{use for the web user. Other bene�ts include making existing applications or

documents universally accessible without rewriting them, and providing interactive page contents, though

these are replaced more and more by Java applets | despite their higher programming complexity (see

Section 3.6.1). In addition, external programs that consume important resources are not necessarily

needed anymore for simple tasks, like displaying data, when browsing the world{wide web. A good

overview of available plug{ins can be found at the internet site of Netscape, whose list is updated

continously.

20

Object Linking and Embedding.

21

This procedure has already been simpli�ed: whenever the web browser requires a plug{in that is not currently installed,

it will be made available automatically.

[Chapter 3] Techniques 35

3.3.2 Authoring Systems and Courseware

According to [Schulmeister, 1997] authoring systems have their background in the programmed

learning model, which was derived from Skinner's theories of operant conditioning (p93). Basically,

the course domain is split up into tiny fractions, which are called \frames" and presented to the user.

The system must wait for a reply by the student, and compare the student's answer with the right

solution. In case of a correct answer the student is rewarded by the system. Authoring systems now

support the developer in writing such a computer{aided tutorial by o�ering standarised components

which describe frequently occuring structures of educational software ([Seidel, 1993]). Unfortunately,

the expectations in both, the authoring toolset and the �nal system, were too high. Early versions just

o�ered a linear learning path through the course, the programmed learning model was soon criticized be-

cause of its limited feedback to the learner, and the development process of applications was not simpli�ed:

The relatively low di�culty level in using authoring systems is a consequence of the missing

programming knowledge of authors. This is possible because an authoring system imposes a strict

algorithm with which the exercises are presented. Consecutively, ease{of{use is therefore paid for

by limitations in performance [. . .]. Despite this attractive user philosophy the idea behind it did

not work. [. . .] Because of the low demands in system and programming knowledge it is quickly

overlooked that [. . .] authoring systems require the teacher to know at least how to split the course

into tiny steps, how to combine the steps logically and consistantly, and how to give suitable feedback

or reward to the learner in case of success or failure. ([Schulmeister, 1997], translated, pp103/104)

Despite the limited orientation of learning goals and lack of intuition and
exibility, [Seidel, 1993] sees

two major bene�ts:

� Clear course objectives

� Precise methodological proceedings for students.

However, the �rst and very promising studies of the use of authoring systems could not withstand

an in-depth evaluation, and it was even feared that poorly designed systems with lack of didactic

imagination would reduce the acceptance of computer{aided instruction in general. Nevertheless,

criticisms of authoring systems has led to the development of an improved version, which was called

courseware. The theoretical backgrounds of authoring systems and courseware are closely related, but

[Schulmeister, 1997] sees the main di�erence in the teaching method by quoting Jonassen: \Tutorial

courseware is basically a mis{application of the programmed learning model of instructional design.

(p107)". The strict mechanism of waiting for a student's reaction and deciding the course
ow upon

that was made more
exible, or it was not implemented at all. Still, interactive instruction used in

courseware is often an extension of Skinner's programmed instruction, but courseware has already

gained more pedagogical success than the early authoring systems ([Schulmeister, 1997], p107).

Taking advantage of that, courseware is mainly concerned with the development of drill{and{practice

programs, which still play a major role in computer education despite their restricted knowledge domain.

Examples and design rules for courseware are mentioned in [Schulmeister, 1997], so I will not

discuss these. Instead I will focus my discussion on the main commercial courseware packages by Macro-

media and Asymetrix, which o�er universal access to their courses by providing plug{ins for their systems.

3.3.2.1 Example: Macromedia Director, AuthorWare, and Shockwave

Macromedia Director is a wide{spread development system for any type of multimedia software. Each

multimedia application is organised like a movie and contains animations, sound, video, and Lingo

scripts, where all these compontents are called \members". Lingo is an object{oriented programming

language responsible for user interaction and movie control that goes beyond the movie \score", which

determines the role of each member. It is based on the programming language C and o�ers concepts like

36 Authoring System and Courseware Plug{In [Section 3.3]

classes, instances and inheritance. Often it is used for message handling as described by [Welsch, 1996]:

While a movie is running various events can occur, which require a reaction by the program [. . .].

Director creates a message for each event that is sent to an precisely determined group of objects (i.e.

scripts) for processing. Some events, which appear frequently, [. . .] are already de�ned in Lingo. The

scripts, which are attached to the various objects of Director, communicate through a well designed

scheme of messages, and so they allow complex reactions to di�erent situations (translated, p267).

The main advantages of such a development system for multimedia applications, compared to standard

programming languages like C++ or Java, are obvious:

� Beginners �nd the drag{and{drop and object{oriented user interface easier to use than having to

learn a programming language �rst.

� As in rapid prototyping multimedia contents can be visualized quickly, and therefore development

costs can be reduced by detecting design errors earlier. The scripting language Lingo misses special

constructs like pointers and lacks in performance| though it reaches a remarkable 70% compared to

C ([Eberl & Jacobsen, 1997], p26) | but still its functionality is appropriate for most projects.

Macromedia has introduced AuthorWare for writing tutorial systems, which should not be confused with

authoring systems mentioned above. A special advantage of AuthorWare is the possibility to track the

student's performance in recording the response time, the number of tries for an exercise, or the objects

on which a user clicks. For example, in the variables CorrectChoicesMatched, WrongChoicesMatched,

FirstTryCorrect and FirstTryWrong the information that the application needs to return individual

feedback to the student is stored. After a developer has �nished creating a tutorial system, AuthorWare

and Director applications can be modi�ed by the compression tool, Afterburner, to run under the Shock-

wave plug{in for world{wide web browsers. Generally, there are no restrictions in writing Shockwave

movies except for (taken from [Eberl & Jacobsen, 1997], pp433/464):

� Key events

These work within the embedded Shockwave section of the document window only if the last mouse

click was in that section.

� Lingo

Almost any Lingo command operates under Shockwave except for �le operations that access the

user's hard disk directly. This limitation was necessary to prevent security leaks via the internet,

however the use of external assets

22

and preference �les is still possible. Whenever these �le opera-

tions are necessary, the user must explicitly con�rm them, for example by downloading the external

assets or answering a dialog box. In my opinion the user is left alone in making such a decision.

Unfortunately there is no neutral instance rating the security issue of third{party assets or hard

disk accesses, so either the user accepts an unknown application or he does not have the possibility

to run it at all. A tutorial system developer must therefore keep in mind that potential users might

deny doing a course, as storing the user's progress is ideally done in a preference �le, which will

require the user's permission.

� Download time

Despite the compression tool, Afterburner, the developer of Director movies or AuthorWare tutorials

must always keep the low data transmission rates in the internet or by modems in mind. Of course,

this restriction will not play a major role if the targeted user group is able to access courses by a

local network. However, then the advantages of remote training, e.g. running a course at any time

from any place, will be lost.

22

\Assets" are the basic materials for multimedia applications, e.g. text, image, audio or video �les.

[Chapter 3] Techniques 37

The examples at the Macromedia world{wide web site brie
y show the abilities of Shockwave applications.

Unfortunately at the time of writing no tutorial systems were available there except for a smaller course

on how to rebuild the skeleton of a dinosaur with the use of bones displayed on screen. Bones can be

picked up and dragged around. If two bones �t together then their joints are connected, otherwise the

currently selected bone will fall back to its previous position. A more advanced Director application is

\Word{O{Matic"

23

which introduces with circular pop up menus a new idea in the design of graphical

user interfaces. As the name suggests, the commands or menu items are arranged in a circle. One positive

outcome is that humans memorize for each menu item a cardinal point where they must move the mouse

to reach a certain command, so after a few attempts this process is automised and menu items can be

chosen even before the circular pop up menu is displayed. The use of circular pop up menus is quickly

understood by the user, and as the author says: \the tools become gestures, easily learned in the user's

muscle memory". As we can see here the possibilities of Director and AuthorWare do not have to be

restricted in simply playing multimedia �les. The usability of a web page can also bene�t from the

Shockwave plug{in, though a quick data transmission rate will be required.

3.3.2.2 Example: Asymetrix ToolBook II and Neuron

Working with Asymetrix ToolBook II is very similar to Macromedia Director: instead of movies the

metaphor \book" is used. A ToolBook application is called \book" and consists of \pages", which are

displayed in one or more windows, also known as \viewers". Like Director, ToolBook o�ers with Open-

Script a professional programming language with commands to execute various instructions from creat-

ing new objects to establishing links to integrated Windows functions. Despite its powerful functionality

OpenScript is easy to handle because of its user{friendly English{like syntax and extensive list of com-

mands (see [Handke, 1997], p22). According to [Asymetrix, 1997] the ToolBook II authoring products

include:

� Assistant

With Assistant educational courseware can be created without the need of a programming language.

� Instructor

Besides a drag{and{drop interface more experienced system developers can also use the scripting

language OpenScript for writing courses. These can be stored as HTML documents with embedded

Java applets, so students may access the system from any computer on the world{wide web.

� Librarian

\[. . .] an Internet{based course management system that enables students to easily access course-

ware and administrators to track and record student progress. [. . .] Built on the popular Java

network programming language, ToolBook II Librarian allows course instructors and administra-

tors to monitor student activity anywhere in the world. [. . .] it is now possible to certify that a

student has received a course; observe a student's progress; and record test results and other valu-

able feedback. In this way, instructors are able [to] verify each student's level of understanding

enabling certi�cation programs and accredited degrees."

� Neuron

With the help of the plug{in Neuron students can access ToolBook applications on the world{wide

web.

The most important feature of ToolBook II is that all its authoring products include Java applets that

represent interactive questions, scoring, and feedback. Consequently, if a ToolBook application is pub-

lished on the world{wide web, the Java applets will replace the proprietary ToolBook controls. These

applets communicate with Librarian to capture test results and other student feedback. Therefore, a

separate plug{in like Neuron is no longer necessary at the student's side. An example at the Asymetrix

world{wide web site shows how a ToolBook application looks like after it has been converted into HTML

and Java applets. Unfortunately its interactive and educational abilities are rather limited. However this

does not have to be not be so, as another application | solely designed for Neuron | demonstrates: a

23

See http://www.sfx.co.nz/tamahori/thought/shockers.html.

38 Authoring System and Courseware Plug{In [Section 3.3]

course for dentists teaches how dental x{rays are classi�ed, or wounds are stitched. In the latter exercise,

the student draws stitches on the open wound, and the accuracy of his solution is rated by the system.

This example especially shows that ToolBook II suits better for writing educational training software

than its competitor Director. [Handke, 1997] thinks that this distinction comes from the underlying

concepts, because Multimedia ToolBook is organised like a book, while the Macromedia Director uses the

\movie" metaphor, where various scenes must be synchronized, instead (p9). However, this could change

with the AuthorWare toolset. If I compare the availability of the two authoring systems Director and

ToolBook II, then the �rst one o�ers a broader user group: its Shockwave plug{in as well as the main

program are available for Microsoft Windows and Apple platforms, whereas Neuron and ToolBook just

support Windows systems. On the other hand, ToolBook has a major advantage in publishing applica-

tions on the internet with its included Java classes and applets, and so the missing plug{ins for other

systems can be replaced by Java code. According to [Eberl & Jacobsen, 1997] Macromedia has made

a license agreement with Sun concerning the use of Java applets with Shockwave, but this is planned for

future software releases (pp479/480). At the moment AuthorWare can just access JavaScript functions

within an HTML page, so a connection to Java applets is already possible with Netscape's LiveConnect,

but controls of an AuthorWare (as well as Shockwave) application cannot be solely replaced by applets.

Unfortunately the competition between the two major companies, Macromedia and Asymetrix, has led

to more software releases in a shorter period of time than ever before, so it is more di�cult for developers

now to adapt to all the modi�cations quickly and successfully ([Handke, 1997], p455).

3.3.3 Discussion

+

Standard

The use of plug{ins is standarized in two ways: �rstly, the programming interface functions are

supported by all plug{in enabled world{wide web browsers, and secondly, running an installed

plug{in is solely controlled by the browser, so for the user a plug{in becomes an invisible part of

the standard user interface of the browser.

+

Programming experience

In contrast to CGI and Java development, writing a courseware application is often supported by

professional development tools like Macromedia's Director and Asymetrix ToolBook, which espe-

cially focus on an easy{to{use development environment for content providers who do not have

programming experience. It should be noted that creating the plug{in program which is included

into the user interface of the web browser requires advanced programming skills.

+

World{wide web access

For example, Macromedia's Authorware supports reading data �les directly from the internet and

displaying new HTML documents in the browser window. Consequently, the shockwave plug{in

o�ers the same services, so a new form of user interface, like the \circular pop{up menu", could

be implemented for a browser. Unlike stand{alone programs written in Java, the browser interface

cannot be fully replaced, so I recommend extending the possibilities of the interface only if necessary.

Most world{wide web users are already familiar with the browser interface, so changing this standard

could hinder the learning process of students.

+

Local

As a plug{in must be installed on the user's computer (and not on a world{wide web server) it

is inenvitably exectued locally. The same is valid for plug{in applications which do not have to

download �les from the internet, but contain all the relevant data. Consequently, the work{load of

a world{wide web server is reduced compared with CGI programs.

+

Extension

Plug{ins extend the possibilites of world{wide web browsers to display new �le formats or run

applications written with external programs.

+

Interactivity

As the examples in the previous sections show, plug{ins o�er real interaction between the student

and the tutorial system.

[Chapter 3] Techniques 39

�

Availability

Plug{ins are native code extensions, so they are speci�cally written for certain operating systems

and computer architectures. In addition, a plug{in enabled world{wide web browser is necessary.

For example, Macromedia's Shockwave plug{in only runs on Windows 95 and Apple PowerPC.

�

Portability

The native code implementation of plug{ins prevents them being portable between di�erent com-

puter systems. However, a plug{in application, like a Shockwave movie, is portable between instal-

lations of the same plug{in.

�

Download size

If complex applications and user interfaces are realised with the help of a plug{in application, the

size of the �le which must be downloaded quickly increases. As the usability of a tutorial system

also depends on the time the students have to wait for a reaction from the system, the sizes of

plug{in applications should be limited depending on the speed of the internet connection.

�

Security

Macromedia's Authorware o�ers two security levels for its applications: \trusting" and \non{

trusting". For example, in the \non{trusting" mode of the Shockwave plug{in writing to the user's

hard disk and downloading external commands or libraries is prohibited

24

. Whenever the user

accesses an application which requires the services of the \trusted" mode, a dialog box asks for

con�rmation to execute the program. However, this decision is solely left to the user as there is no

authority which can objectively tell whether an application can be trusted or not. The problem is

that tutorial systems which often store a permanent student model require an \agreement of trust"

by the student.

3.4 Common Gateway Interface

\The combination of adaptivity and hypermedia on the World Wide Web is in technical terms a tricky

one. [. . .] Few possibilities exist in present tools [. . .] providing the
exibility that is needed when tailoring

information to individual users ([Espinoza, 1996])". One of these is the Common Gateway Interface

25

,

which was introduced with the �rst HTTP servers to provide access to external programs from the world{

wide web. Since then it has expanded into a powerful method to perform user requests, and only with the

programming language Java an equivalent alternative has been established. Using the Common Gateway

Interface is amazingly simple as long as a tutorial system developer has some experience in programming.

3.4.1 Common Gateway Interface Basics

Common Gateway Interface programs can be written by a system developer in any programming or

scripting language, as long as the result is executable and running independently under a world{wide

web server. Therefore, we call CGI programs \external applications" as they are not part of an HTTP

server itself. Consequently, they do not depend on a special server, thus making them interchangable

between di�erent HTTP server implementations. With the help of CGI applications it is also possible to

access programs that do not have their own world{wide web interface. In this case the CGI application

must work as a gateway between the two di�erent environments: user input and program output are

processed to modify the data according to the required formats. For example, HTML code can be

added to the program output, so the result is then rendered by a world{wide web browser. Common

Gateway Interface programs are often needed when the contents of an HTML form must be processed,

because a CGI program can be executed in real{time and output dynamic information

26

. Basically, the

communication between the user and the form processing application works like this: the world{wide

web user �lls in the form with individual data and submits it to a server. The server receives the data

24

An exception: in \non{trusting" mode external world{wide web documents which are not on the user's hard disk can be

read. Writing is still strictly forbidden.

25

Abbreviated as CGI

26

I.e. according to the user's input data is generated on{the{
y. As with normal HTML �les the contents of an output

cannot be changed after these have been displayed in the web browser window.

40 Common Gateway Interface [Section 3.4]

and knows by the information stored in the URL what external program must be started or queried,

if the CGI application is running continously. The output of the program is collected by the server

then and sent back to the user's world{wide web client. If no errors have occurred the user will see the

response to his request in the browser window.

After these introductory words I will have a deeper look at the technology behind the Common Gateway

Interface. CGI data is accepted by the world{wide web server with the help of two methods, GET and

POST, which are chosen by the system developer depending on the purposes of each HTML form. The

di�erence between the two methods is small, but important: the method GET is intended for transmitting

small amounts of data to the server, as the data is appended to the URL that symbolises an external

program call. This technique has one major bene�t though. Due to the appended data each external

program call is distinct, so the user is able to set a bookmark or a link to the requested resource without

ever having to re{enter the data again. Therefore, this method is commonly applied in internet search

engines in order to return a link to the user, which then can be processed by the search program each time

the user selects that link, as all the required parameters are already set. The method POST does not o�er

this functionality as data is separated from the URL, however this makes transmissions of unrestricted

length possible. The data is sent to the standard input stream of the external program, and parsed there.

In the latter case especially, environment variables, which are additionally set by the world{wide web

server for the current data stream, are needed to send parameters to the program. Amongst the most

important are ([December Communciatons, 1997]):

� CONTENT LENGTH

Primarily used by the method POST, it denotes the length of the content as given by the client.

� CONTENT TYPE

Primarily used by the method POST, it represents the content type of the data for queries that have

attached information. For example, the type application/x-www-form-urlencoded for form data.

� QUERY STRING

Used by the method GET, it contains the information following the �rst ? in the URL which references

the external program. The symbol ? separates the URL from the data, and the query string is

encoded in the standard URL format by changing spaces to + and encoding special characters with

%xx hexadecimal values. Therefore, the string must be decoded before it can be processed.

� REMOTE ADDR

The IP

27

address of the remote host making the request.

� REQUEST METHOD

It stores the method by which the request was made, e.g. GET or POST.

The system developer should check these variables before analysing the data with the CGI program.

Further precautions are especially necessary if the source code of the program contains disk operations

or handles sensitive data. Normally, a CGI application is executed under the user identity of its owner,

so all the owner's rights are also available for the CGI program. The developer must therefore prevent

any misuses, which could alter the proper operations of a program. While the program is running, data

can be sent to the standard output stream continously. This output can either be an HTML or text

document generated by the program, or instructions to the server for retrieving a desired output. It is

important that at least some output must be given as otherwise an error message will be displayed on

the user's screen. The output begins with a small header which contains the so called server directives.

Headers which are not server directives are directly sent back to the client. The most common directive

is Content-type, which denotes what MIME type the returned document has. For example, in case

of HTML, the developer must put Content-type: text/html in the header. The �nal header is then

separated from the remaining data by a blank line.

The following examples will show how Common Gateway Interface programs are already used in distant

education and educational training. They are a powerful and easy{to{use method for software developers,

27

Internet Protocol, a connection{less protocol for data transmission.

[Chapter 3] Techniques 41

in order to combine new or already existing tutorial system with the world{wide web. At the moment CGI

applications are the only world{wide web extensions, which can be accessed by any browser available,

as long as plain standardised HTML code is returned. The potential user group is unrestricted, and

a system developer will largely pro�t from the fact that just one version of the tutorial system must

be implemented (new technologies are often limited to the browsers by Microsoft or Netscape, so other

browsers would require special solutions or alternate versions). However, there are some disadvantages:

� Programming knowledge required

As previously mentioned, the Common Gateway Interface applications must be written in a pro-

gramming language like C/C++ or Perl. However, many potential tutorial system developers may

not have programming experience at all, so in this case courseware authoring systems are recom-

mended.

� High work{load on servers

Whenever the client sends a request to the world{wide web server, an instance of the CGI program

is started to compute the response. If many users are accessing the system at the same time, then

each new instance will increase the work{load of the server, and so increase the response time as

well. For a training course, whose access rate statistics contain certain peak points repeatedly, the

resulting delays may in
uence the usability and user acceptance of the whole system. However,

the work{load can be reduced by preventing incorrect user input for example. With the use of

JavaScript the contents of form entry �elds can be checked, before data is sent to the CGI program.

If JavaScript is not available then the necessary data checks must be done by the CGI program

itself, hereby consuming important system resources.

� Limited interaction

Interaction with Common Gateway Interface programs is limited to request{response communica-

tions, so the prospects of a tutorial system will also depend on the response time of the network.

In addition, it is not possible to implement applications which require direct user manipulation like

the dinosaur construction kit mentioned on page 37. As long as interaction can be limited to data

that is selected with the help of checkboxes or radio buttons, or entered by the student as text,

Common Gateway Interface applications can be used. If a tutorial system requires mouse events or

constant student monitoring, then Java, JavaScript (partially) or plug{ins are recommended. The

CGI program must output the code for embedding Java applets, JavaScript functions or plug{in

objects, but it will no longer be compatible to browsers which do not implement these methods.

The Common Gateway Interface method alone does not provide all the abilities required by successful

tutorial systems. However, it forms a reliable basis for an adaptive and intelligent tutorial system,

onto which an interactive user interface can be built with the help of Java or partially JavaScript. The

CGI program is responsible then for managing domain and expert knowledge, initiating the tutoring

component, and storing user models, whose information is collected by queries to the CGI program

as well as by reports coming from Java applets and JavaScript functions. In addition, already existing

tutorial systems can be transformed into CGI applications, primarily by changing the way in which the

user input and system output are handled. For example, if an intelligent tutoring system was structured

with the architecture suggested in Section 2.3, then only the communication module would require new

programming, in order to use world{wide web displaying and interaction techniques.

3.4.2 Common Gateway Interface in Education

The uses of Common Gateway Interface programs are manifold, and the following examples are just

representatives for all the applications that exist in educational training.

3.4.2.1 Example: Virtual Seminar Koalah

The seminar Koalah

28

last held at the Ludwig{Maximilians{Universit�at M�unchen in the winter semester

1996/97

29

is completely computer{based and managed over the world{wide web, so students from

28

Kooperatives Arbeiten und Lernen an der Hochschule.

42 Common Gateway Interface [Section 3.4]

di�erent universities can participate. At the beginning of the seminar the members are assigned to a

group, in which they work on a common task or topic, without having to meet personally. In fact, each

group gets its own discussion board, where the members of that group can join to make proposals,

publish results or contact the lecturer and other seminar members. Whenever a student wants to

make a contribution to the board, he must do that with the help of a special email link. In that link

the suggested subject line of the email is given, so the posted messages are structured by default: for

example, by the subject line alone the type of a message, e.g. question or answer, can be identi�ed

by the server and handled accordingly. The messages mailed to the world{wide web server are in fact

not parsed by a Common Gateway Interface program, but a similar technique is used. Various other

examples of virtual seminars, in which discussion boards are implemented by CGI applications, exist but

the herein introduced seminar Koalah has already been the focus of a research project, whose experiences

were summed up in a paper by [Nistor & Mandl, 1995]. The results will be presented hereinafter.

The seminar itself is structured into di�erent project steps, like introduction, project analysis, and �nal

discussion. Each exercise uses various mile{stones to synchronise the group members with the overall

schedule. Discussions are commented and rated by the lecturer, who alone decides when a mile{stone

was reached. In addition, a chat room

30

was implemented to provide a way for informal meetings.

What were the experiences of the virtual seminar? [Nistor & Mandl, 1995] say that on the technical

side the world{wide web, in which most of the information was retrieved, was so slow that an important

part of the seminar, which was searching for data, was di�cult to handle. After the students had

familiarised themselves with the navigation in the world{wide web, selecting the right information was

also a problem. Therefore, the lecturer was mainly occupied with organising the seminar rather than

focusing on topical aspects of the discussions. The text{based exchange of information was actually

hindering the communication rather than promoting it. The seminar members were mainly concerned

with the form and contents of their messages, and the students felt that information was primarily

re
ected rather than exchanged. During the seminar students continually expressed their demand for

more social interaction, as they had no contact with the other seminar members. Exercises were not

seen as a common goal but as an individual task, and students did not feel the need to solve them in

time. In addition, the communication within a seminar group was mainly centered around the lecturer.

[Nistor & Mandl, 1995] came to the conclusion that more social interaction and an early introduction

to cooperation were important to improve the communication amongst seminar members. With the

online chat room and the mile{stones they have already done that, though in my opinion a better

structured discussion board should also be adopted. By the use of CGI programs the student could select

in which order he would like to have the subject lines of messages displayed, or whether the discussion

board is structured hierarchically

31

or not.

3.4.2.2 Example: L

A

T

E

X{Tutorial

The L

A

T

E

X{tutorial

32

is a representative of all the Common Gateway Interface scripts or applications

that work as an interpreter between an external program and the world{wide web. Other examples are

the CGI programs used by internet search engines that transform a user's query into an appropriate

database query and send back HTML code for displaying the results. The L

A

T

E

X{tutorial is primarily

intended for beginners, who want to make their �rst steps in this document preparation system which

uses complex commands to describe text layouts. The student learns with the help of trial{and{error

and immediate feedback, how command modi�cations in
uence documents. First the new commands are

presented to the student in an introductory text, where examples for closer inspection can be selected.

Whenever this happens, a world{wide web form is loaded into the browser which contains the L

A

T

E

X code

of the selected example in a text entry box. The code itself can be edited by the student, so he is able to

change the parameters, or add and remove commands. If the button for submitting the form is clicked,

the L

A

T

E

X code is sent to a CGI program that transmits the data to the L

A

T

E

X compiler. It collects

the textual output of the compiler, and, if the compilation was successful, it initiates the conversion of

29

See http://in�x.emp.paed.uni{muenchen.de/nic/ws9697/tnseite9697.html.

30

A chat room is a virtual meeting point where people can talk online in a primarily text based environment.

31

I.e. replies immediately follow after the originating message.

32

See http://www.uni{giessen.de/hrz/tex/cookbook/zero.html.

[Chapter 3] Techniques 43

the result | normally a .dvi �le | into a graphics format that can be displayed by the world{wide

web browser. Afterwards an appropriate HTML frame is generated to present both �les to the student.

There he can see what in
uences his modi�cations had. In spite of the simple solution the L

A

T

E

X{tutorial

is a remarkable example on how CGI programs can be used in education. The system is individually

tested and examined by the student as it allows modi�cations of the sample code and feedback by the

L

A

T

E

X compiler. However, one improvement could be made: in case of an error the textual output of the

compiler should be analysed by the CGI program to support the student with a better explanation than

the standard error message does.

3.4.2.3 Example: Plan and User Sensitive Help

Figure 3.1: Architecture of the Plan and User Sensitive Help system. The browser, called \Netscape

viewer", sends requests to the page generator which retrieves data from the knowledge base and adapts

the presentation of an hypertext page according to the information received from the user modelling

component. Graphics, which show the user's current position in the information space, are directly sent

to a Java applet in the browser window.

The PUSH

33

project is a test system, which provides an adaptive user interface for searching and

retrieving manuals on the software development method SDP

34

. Its main goal is to reduce the risk of

an information over
ow, that may happen due to the enormous amount of documents which are stored

in the underlying database. According to [H

�

o

�

ok, 1996] information is presented in a structure that

is closely based on the domain itself. Follow{up questions and hotwords establish links to alternate

documents that are speci�cally oriented to the current user's task. Therefore, PUSH tries to determine

what intentions a user has, and individually decides, what information is presented. I will split the

introduction to PUSH, which was developed at SICS

35

, into two parts: one, that discusses the use of

Common Gateway Interface programs here, and another one in Section 3.6.2.1, that will focus on the

PUSH Java applet. In �gure 3.1 the overall architecture is shown. POP

36

is an adaptive hypermedia

system with a world{wide web based interface to the information in the SDP manuals, and according

to [Espinoza, 1996] it has been implemented with the SICStus Prolog programming environment.

The Prolog database is queried by a page generator, that retrieves the information which the user

currently needs. In the result HTML code is included, and so a document whose contents are adaptively

selected by the generator is presented to the reader. The data is structured with the help of HTML,

33

Plan and User Sensitive Help.

34

System Development Process.

35

SICS is a non{pro�t research foundation funded by the Swedish National Board for Technical and Industrial Development

(NUTEK) and by a group of companies (CelsiusTech AB, FMV, Ellemtel Utvecklings AB, IBM Svenska AB, Sun Labs,

Ericsson and Telia AB).

36

PUSH Operational Prototype.

44 Common Gateway Interface [Section 3.4]

and various link and control elements are added to enhance the text with clickable buttons, menus and

follow{up references (see [Espinoza, 1996]). The page generator is a CGI program, which dynamically

creates world{wide web pages. The advantage of this method is that individually generated pages are

returned to the user without having to keep a static database of all possible queries and their resulting

HTML �les on disk. In addition, the document data, which is stored in the database, and the code

for the interactive user interface are separate from each other (see [Espinoza & H

�

o

�

ok, 1996]), so

new SDP documents can be added or changed without the need to modify the page generator itself.

Another design constraint was that information, which was returned, had to be restricted, because

world{wide web users tend to read the part of a document, which is shown in the browser window

at once, i.e. without the use of scroll bars (see [Espinoza, 1996]). Therefore, unnecessary data is not

immediately displayed to the user, but marked as \collapsed stretch{texts" in the HTML page. The

user can click on these markers, and the hidden information is expanded. Due to the design of the

generated pages a new query to the slow Prolog database is not required anymore: in the �rst query

all the available information is included, but commented out by the page generator. In any consecutive

queries the comments are removed, and the reformatted page is directly sent back to the user's

web browser. More details on how the page generator and the Prolog process interact with the use of

sockets, and the web browser and the generator with CGI, can be found in the thesis by [Espinoza, 1996].

A similar method, i.e. using Common Gateway Interface programs to scan for markers in �les, is often

applied when implementing proprietary extensions to current world{wide web standards. The article by

[Lai et al., 1995], which was introduced in Section 3.1.4, describes a prototypal implementation of a

web browser, which processes the proposed HTML tags with the help of CGI programs. Whenever a

student accesses an HTML page of the tutorial system, the contents of that HTML �le are scanned for

the new tags. According to the speci�cation either a hierarchical overview structure is generated (for the

commands PARENT and CHILD), or a list of preliminary pages which have to be read before access to the

currently selected HTML �le is granted (for PREREAD) is displayed.

3.4.3 Discussion

+

Availability

Of all the techniques introduced in this chapter CGI programs have the best availability: as long as

they only return HTML code to the student, any world{wide web browser can render the results. In

contrast to that, plug{ins, JavaScript and Java just work with Netscape's Navigator and Microsoft's

Internet Explorer.

+

Portability

As the output of CGI programs can be displayed by any world{wide web browser, the students

can access CGI applications from any computer platform for which a browser exists. The CGI

application, however, is generally not portable because it is an external program which is compiled

and runs on a speci�c platform. Consequently, the portability depends on the source language, in

which a CGI application was written.

+

Standard

The CGI interface is fully standardised within HTTP, because the output of a CGI program must

consist of an HTTP header and the document text.

+

Integration

As CGI programs normally return HTML documents, plug{ins, JavaScript code, Java applets etc.

can be embedded into the document source. In addition, the CGI interface allows integration of

existing applications into the world{wide web: the system developer must then provide an interme-

diate interpreter which modi�es the data streams from and to the external application accordingly.

+

Extension

CGI mainly extends the possibilities of the world{wide web by making external programs available.

This is particularly important for tutorial systems: an intelligent tutoring system can be realised

in which the communication between system and student is established by a CGI program while

[Chapter 3] Techniques 45

the remaining parts of the system, i.e. student, expert and tutor model, remain unchanged. For

hypertext systems better link management can be introduced by using a link database which is

queried by the GET method. These examples just represent a minor aspect of the possibilities CGI

o�ers.

+

Student modelling

CGI applications reside on a world{wide web server, and in general the possibilities of reading,

writing and executing �les are not restricted (depending on the operating system and the system

developer's access rights). Consequently, modelling the student's knowledge is not limited by restric-

tions which are imposed by other techniques. In addition, a student's model, either for the current

session or for an inter{session pro�le, can easily be stored: for example in an external database that

is queried by the CGI program.

+

Separation of concerns

It is possible with CGI programs to separate the document and exercise texts from the program

logic of a tutorial system. Thus, changes to texts can be quickly made without the need to modify

the source code of the system itself. I implemented a similar concept for the Tootsie Development

System (see Section 4.2), which is easily localized for di�erent computer environments by changing

the resource variables, and not the source code of the CGI programs. CL{HTTP, plug{ins, and

Java o�er the same possibility, whereas JavaScript requires that the source code of functions is

incorporated in a world{wide web document

37

.

�

Local

CGI applications do not o�er the possibility of running locally on a student's computer, so an

internet connection is necessary when accessing a tutorial system. This problem can be solved

by installing a local world{wide web server on each user's computer, but this is not feasable.

Consequently, with the need to communicate with many di�erent users the work{load of the server

will increase (as mentioned on page 41).

�

Interactivity

The CGI interface uses a request{response communication, which does not make real interaction

between student and system possible. Students must select a submit button before data is sent to

the CGI program (see also page 41). With a slow internet connection this will e�ect the usability

of a system as the response time will be too long. A suitable solution is to implement plug{ins,

JavaScript code, or Java applets.

�

Programming experience

Writing CGI applications normally requires advanced programming experiencies.

�

Exercise{speci�c reactions

As described in \separation of concerns" the exercise texts and the source code of a tutorial system

can be stored in di�erent �les. However, if system reactions to users' activities must speci�cally

be de�ned and if the source code is not available (as in many commercial products), the tutorial

system developer will depend solely on the implementation of the CGI program, whose programmer

hopefully foresaw all the situations which could happen. This problem can be solved if a \script-

ing language", like Macromedia's Lingo, is included, but it should o�er advanced programming

constructs which can describe the interaction between system and student. In implementational

techniques, which include system reactions in exercise �les (like JavaScript), modi�cations can in-

stead be made by adding the required functionality to the individual �les. The advantage is that

the same programming language in which the system is written is used, but program logic and

document contents are then not separate.

3.5 JavaScript and Cookies

Basically standard HTML documents, i.e. documents that can be rendered by most world{wide web

browsers, have static contents, that means that for all users exactly the same information is displayed.

37

The current JavaScript 1.1 however allows to specify an external source code �le which is loaded separately.

46 JavaScript and Cookies [Section 3.5]

However, many world{wide web services, as well as many web publishers, require the possibility of

creating the contents of web pages dynamically: document texts can depend on the date or time of the

user's access, frequent visitors want to specify certain topics in which they are mainly interested, or

more than just one document window must be controlled simultaneously. The already existing standard

for dynamic contents, the Common Gateway Interface, does often not ful�l these needs or expectations:

�rstly, their execution requires valuable server time, and secondly, their
exibility is limited: contents

that must continously be updated on a web page can hardly be implemented. With the dawn of Java and

JavaScript, which have both been included in the most popular world{wide web browsers by Microsoft

and Netscape, these limitations are no longer valid. In this chapter, I discuss the use of the scripting

language JavaScript, whereas the more powerful, but also more complex, programming language Java

is explained in detail in Section 3.6.1. In addition, I also mention a new method of storing information

persistently on a client's hard disk, the so called \Cookies". The handling of Cookies has largely bene�ted

by its implementation into JavaScript. In Section 3.5.3 on \LiveConnect" a way of communication

between JavaScript, Java and plug{ins is introduced, before I conclude with a few examples that use the

new means for dynamic web contents.

3.5.1 JavaScript Basics

JavaScript was �rst introduced for world{wide web browsers by Netscape Communications in the years

1995/96. By now the newest release has already reached version number 1.1, and, in addition, Netscape's

strongest competitor Microsoft | together they control approximately 80% of the world{wide web

browser market | has implemented the similar, but not entirely equivalent, JScript. The potential user

group of JavaScript is therefore large enough to be considered as a technology for implementing tutorial

systems. JavaScript itself is called a scripting language, and, despite its name, not comparable to Java at

all. In general, scripting languages are part of various applications and provide a simple way to control

the application with the help of a small program, for example a macro, for tasks that frequently occur.

Their main idea is to address more users than the normal programming languages do, by reducing

complexity or by making them more alike to a natural language:

The JavaScript language resembles Java, but without Java's static typing and strong type checking.

JavaScript supports most of Java's expression syntax and basic control
ow constructs. In contrast

to Java's compile{time system of classes built by declarations, JavaScript supports a run{time

system based on a small number of data types representing numeric, Boolean, and string values.

JavaScript has a simple instance{based object model that still provides signi�cant capabilities

[Netscape Developer, 1997a].

JavaScript code is part of the HTML page that uses it, and so it is also called \inline code". However,

it can also be stored in a separate �le and included by any HTML document, a method which makes

handling and maintenance of the source easier. At the time of writing this operation is only available from

JavaScript 1.1 on, and is not supported by Microsoft's JScript or older world{wide web browsers. Despite

the common impression of scripting languages, i.e. low complexity in favour for ease{of{use, JavaScript

supports all basic programming constructs like recursion. Beginners with no programming experience

must de�nitely invest some time before they can start writing code, but the same is also necessary

for programming languages that are part of courseware systems, like Macromedia's Lingo. There, the

integrated and GUI control{oriented development environment will leverage the coding, but such a tool

is also planned for JavaScript. What makes JavaScript easy to use is not only the close resemblance to

Java, and the programming languages C and C++, but also:

� Variable declaration

In JavaScript variables are loosly{typed, i.e. the developer does not have to specify a certain variable

type, like char or int in the related programming language C: he just assigns a value to the

variable. During the execution of JavaScript programs it does not even matter whether the type

of the assigned value remains the same. When necessary, JavaScript will perform type conversions

[Chapter 3] Techniques 47

automatically. By default, variables are de�ned globally, and only for local declarations the keyword

var must be used. For beginners, these two features make JavaScript easier to handle, because to a

programmer the name or value of a variable is more relevant than its type or location. However, this

also means that larger JavaScript applications are more di�cult to maintain: variable declarations

can appear anywhere in the source code, and variable assignments may even intersect. Therefore I

recommend that global variables are de�ned only when necessary, and variable names are chosen

that clearly express the intended use.

� Objects and classes

In JavaScript the commonly known structures, array and record, are in fact not part of the lan-

guage syntax, they are seen as user{de�ned class objects

38

. Classes are simply declared by writing

a JavaScript function, which is named after the class and parameterizes the class properties. Con-

sequently, if the developer wants to create an instance of a class, he will have to use the keyword

new, followed by the function call, to reserve enough space for the class object. More complex

structures can also contain their own functions, which are known as methods, but unfortunately

more advanced techniques of object{oriented programming, e.g. inheritance, are not available in

JavaScript. The most frequently used standard classes are document, window and navigator. For

example, the �rst one contains all the properties of the current HTML page, but also gives access

to the links and form elements of that page. These can then be altered by JavaScript commands

and functions. New classes cannot be derived from standard classes, so the class hierarchy is known

as an instance hierarchie (see [Netscape Developer, 1997a]), because objects and not the class

itself are available to the developer.

JavaScript functions are normally located in the <HEAD> section of an HTML �le, so they are loaded

before any data is displayed or user events occur (see [Netscape Developer, 1997a]). Otherwise,

there are no restrictions in positioning JavaScript code in an HTML �le, so whenever the web browser

is executing a method or function call, the results will be rendered within the normal document text

ow. This just works once while loading a page, but nevertheless, the system developer is able to de�ne

dynamic, often user{speci�c, contents, that depend on external in
uences like Cookies or additional

information on the web client. In contrast to that, event handlers can be triggered by the user at any

time while interacting with the web browser. Still, once the document text has been fully displayed in a

browser window, it cannot be changed by a function call anymore. What event handlers can do though

is manipulate the contents of form controls, do computation, and display a dialog box or another HTML

page in the same or new browser window. If I examine the method, in which JavaScript functions are

executed by the world{wide web browser, I �nd a contradiction in the o�cial documentation: in general,

JavaScript is interpreted by the client, but according to the description of the new object Function \[. . .]

declared functions are compiled". Except for performance reasons the distinction between compiled

and interpreted code will not in
uence the development process of a tutorial system. The prede�ned

JavaScript methods mainly o�er link management, string manipulation, mathematical functions and web

browser control. A good overview of all available methods, properties and event handlers | examples

for the last two will be dicussed later | can be found in [Netscape Developer, 1997]. As a typical

example for the use of a JavaScript function in a tutorial system, SetTimeout o�ers the ability to run a

given code expression after a certain amount of time, so for instance, by calling SetTimeout recursively

the value of a form control or a variable can be continuously updated. In a tutorial system SetTimeout

may be used to display a help screen after an elapsed time period, or to collect user data by storing how

long a student has spent on a certain task.

Amongst the useful properties of class objects for educational programs are document.cookie and

document.referrer. The �rst one allows to easily set and retrieve Cookie values as described in Section

3.5.2. As in the tutorial system prototype Tootsie | see Section 4.2.4.1 | Cookies can be applied to

store student data, e.g. what exercises he has done and what di�culty level he has chosen, in order to

select further tasks and feedback individually. In document.referrer the URL is kept, from which the

current world{wide web page was accessed. This reference may be checked to see whether the student is

38

Netscape's JavaScript documentation, see [Netscape Developer, 1997a], uses the term \object" di�erently than I do:

whereas I use the commonly known expressions from object{oriented programming, the documentation replaces \class"

with \object", and \object" with \object instance". Although strictly speaking JavaScript is not an object{oriented

language, the object{oriented terms seem more appropriate to me.

48 JavaScript and Cookies [Section 3.5]

coming from a preliminary page, and following the suggested course
ow. However, the most important

advantage of JavaScript are the event handlers, which allow interactive HTML pages. Event handlers are

regular functions, that are called whenever a user event

39

occurs. Most form controls

40

, as well as the

web browser itself, support these, so the way in which the user is interacting with the current document,

can be followed and stored. Event handlers are mainly applied when simple computations or operations

must be done, or �ll{in forms are checked for proper input before submitting them to the server in order

to reduce the server's work load. However, their abilities can be ideally used in a tutorial system to

establish an student pro�le: e.g. in which order were the exercises done? How many times has the help

button been clicked? How often did the student's mouse pointer leave the current browser window? As

the tutorial system prototype Tootsie shows, it is also possible to do all the student modelling with the

help of event handlers and JavaScript, though the resulting model is very limited. However, in this case

the main bene�t is that the tutorial system can also run without a permanent internet connection, as

no external programs like Common Gateway Interface applications are required. An overview of existing

and proposed events is found in the new HTML 4.0 speci�cation, which was introduced in Section 3.1.3.

HTML 4.0 acknowledges the use of scripting languages, and points out that \HTML's support for scripts

is independent of the scripting language [Raggett et al., 1997]", so alternatives to JavaScript may

be announced sooner or later.

The bene�t of JavaScript is what [Raggett et al., 1997] calls \smart forms". Before an HTML form

is submitted to a server its contents can be checked for erroneous input, thus informing the user immedi-

ately and reducing the server's work{load. In addition, networked applications can be build with the help

of dynamic contents. However, JavaScript is not standarized yet, and so it is di�cult to write universally

understood programs, because browsers may react di�erently to the same code (see [December, 1997]).

Improvements have been made up to now, but still JavaScript is not fully compatible. While writing

Tootsie I noticed for example that certain commands do not work on all operating systems, even if the

world{wide web browser came from the same manufacturer. In particular Microsoft's Internet Explorer

3.x had di�culties with JavaScript code: even on Microsoft's internet sites runtime{errors occurred, and

in particular, the code for changing the contents of a frame, which was mentioned in the Frequently Asked

Questions list by Microsoft, did not work. However, as long as standard commands and event handlers

are used, the compatibility problems can be reduced, as many internet sites that run JavaScript programs

show. The developer must remember though that the potential user group of a tutorial system is limited

to the web browsers which understand JavaScript, and that tests on di�erent platforms may be necessary.

3.5.2 Cookies

Cookies allow world{wide web servers to store small pieces of information on the client's side, and their

contents can be retrieved any time in future connections. In fact, they are not restricted to the scripting

language JavaScript only; they are actually part of the HTTP header of any HTTP object, so for instance,

Common Gateway Interface programs are also able to work with Cookies. Nevertheless, I discuss the

Cookie spezi�cation in the context of JavaScript because of the easy{to{use mechanism that JavaScript

provides: a Cookie is a property of the class document, and it can be accessed like any string object. As

previously stated, Cookies are a persistent piece of information, which is set by the server and kept on

the client's side. In general, their life{span lasts longer than the connection to the world{wide web server,

so whenever a user returns to the same web site again, the Cookies are still valid, and their contents can

be retrieved. They will only be deleted, when their expiration date is reached, or when the user himself

removes them from the hard disk. The spezi�cation de�nes the following parameters for the Cookie HTTP

header:

� <name>=<value>

After the Cookie has been set by the server, it can be accessed under the given name in order to

retrieve its value. A new value is stored whenever it is assigned to the Cookie again. The name and

value sequences themselves contain any character excluding semi{colon, comma and white{space.

39

A user event is e.g. a mouse click or a keyboard input.

40

In this context, the expression \intrinsic event" is common in various documentations like [Raggett et al., 1997].

[Chapter 3] Techniques 49

If the length of a Cookie exceeds the maximum 4 kB the additional characters will be removed

before the Cookie is set.

� expires=<date>

The expiration date speci�es how long a Cookie is stored on the client's side. If no expiration date

is given, the current Cookie will be deleted after the user session ends. The same will happen, if

the date is set to a value in the past. In any case, the path and the name must exactly match in

order to replace the old Cookie with a new Cookie. If the maximum number of stored Cookies

41

is

reached, the least recently used Cookie will be deleted, although it has not expired yet.

� domain=<domain>

In order to prevent Cookies being accessed by unauthorized servers, each retrieval of a Cookie value

must be con�rmed by a \tail{match"

42

of the domain name. The default value of domain is the

host name of the server, which generates the Cookie.

� path=<path>

\The path attribute is used to specify the subset of URLs in a domain for which the Cookie is valid

([Netscape Developer, 1997e])". By default, the path of the current document will be assigned

to path.

� secure

The Cookie will only be transmitted if the communication between server and client is secure.

Currently most world{wide web users view Cookies, which are able to store any textual information on

the users' hard disk, with suspicion. They fear not only possible security leaks through implementational

errors, but mainly the ability to create a profound user pro�le. Although in most browsers a dialog box is

optionally displayed, in which the user is asked to con�rm a Cookie whenever it is transmitted, the user

must have the opportunity to see and control the contents of Cookies himself. In a tutorial system the

student will be able then to try various \what{if" situations by modifying the Cookie values. In Tootsie

Cookies are frequently used to learn more about the student, to give feedback, and to set user preferences.

The tool \Cookie cutter" helps the student to check the values stored in these Cookies, or to change their

contents. By making Cookies accessible to the students, I therefore hope that the user of a tutorial system

will accept and trust them. At the time of writing the prototype Tootsie is the only educational system

that uses JavaScript in conjunction with Cookies. The lack of experience and examples in regard to the

implemention of tutorial systems in JavaScript was the main reason for writing the Tootsie system. In

addition, the prospect that Cookies work without a permanent internet connection, for instance when

running on a student's computer at home, was a compelling argument for the technique JavaScript in the

software design process

43

. Other implementations of Cookies include shopping in the world{wide web,

or storing login and connection parameters. In the �rst example, the Cookie works like a shopping cart,

in which the user puts goods, before he pays at the check{out. The second use is applied by the PUSH

system (see Sections 3.4.2.3 and 3.6.2.1): it works with Cookies to make connection handling between

the client and the Prolog process on the server easier. The socket number, which each user gets when

accessing the Prolog database for the �rst time, is stored in a Cookie in order to be sent to database

when a new queries must be processed.

3.5.3 LiveConnect

The techniques that are suggested in this thesis can be combined to enhance the abilities of a world{wide

web based tutorial system. If a developer uses cascading style sheets for the layout, the scripting language

JavaScript for checking user input and setting preferences, and �nally Java or plug{ins for simulations and

interactive graphs, he will also require a way to communicate with the di�erent objects in a web page. In

41

This may di�er from client to client, however the minimum numbers are: 300 Cookies in total, and 20 Cookies per server

or domain.

42

\Tail matching means that [the] domain attribute is matched against the tail of the fully quali�ed domain name of the

host ([Netscape Developer, 1997e])".

43

As far as I know only Netscape's Navigator supports this functionality. For Microsoft's Internet Explorer the non{existing

internet connection could be replaced by the Personal Web Server.

50 JavaScript and Cookies [Section 3.5]

this case, he will need Netscape's LiveConnect to \call Java methods from plug{ins, call native methods

implemented in plug{ins from Java, call Java methods from JavaScript, [and] call JavaScript from Java

methods ([Netscape Developer, 1997d])". The same functionality is also available for Microsoft's

Internet Explorer, so the possibility of connecting HTML, plug{ins, JavaScript and Java is not limited

to one browser manufacturer only. According to the LiveConnect documentation JavaScript is now part

of the Java environment, so every public class of Java can be accessed by JavaScript. As Java applets

are embedded into a world{wide web document, they can be referenced with JavaScript by their given

applet name in the document object. If a method call to a public function of a Java class is added to

that applet reference, the method will be executed. Plug{ins and Java classes interact with the help of

the Java Runtime Interface JRI. Plug{ins can de�ne public Java classes that are initiated at the same

time whenever a plug{in is executed. As mentioned before one bene�t of JavaScript is that all public

Java classes, which are currently loaded, can be accessed by a script, so as a result JavaScript is able to

communicate with the classes of the plug{in as well. In addition, JRI allows Java classes to call native

44

plug{in functions (see [Netscape Developer, 1997d]).

3.5.4 Discussion

JavaScript only operates within an HTML document, so the implementation of exploratory learning

environments is possible. In addition, JavaScript also allows adaptivity, student monitoring and guided{

discovery learning on a basic level, as event handling, Cookies, and individual user support are part of

its functionalities.

+

Availability

JavaScript can already be applied in current world{wide web browsers, i.e. Netscape's Navigator

and Microsoft's Internet Explorer. The latter however, does not implement all the classes and class

methods of JavaScript 1.1.

+

Portability

JavaScript is platform{independent if a JavaScript capable browser exists for a particular computer

architecture or operating system. The only exception is the newline character in a textarea object:

for Unix and Apple Macintosh platforms \n is used, while Windows encodes newline as \r\n.

However, the author of a world{wide web document which incorporates JavaScript can query the

user's platform with the userAgent property of the navigator class.

+

Integration

As JavaScript must be part of an HTML document it can be used in conjunction with other

techniques: LiveConnect can establish a communication between Java applets and JavaScript,

while Macromedia's Authorware can directly execute JavaScript functions with the procedure

GoToNetPage. According to [Mallery, 1997] the CL{HTTP server also supports JavaScript.

+

Extension

The scripting language JavaScript extends standard HTML by the ability to process user input and

data. Before information is sent to the world{wide web server, forms can be checked for erroneous

input and basic computations can be made. In contrast to CGI, the browser itself handles these

requests, thus reducing the work{load of the server. In addition, individual document texts can be

presented to the students and depending on the students' access history the course
ow can branch

with the help of JavaScript's if-else command.

+

Interactivity

JavaScript does not o�er the possibilities of Java or plug{ins, but its event handlers can provide

feedback in many situations: in JavaScript 1.1 for example, images can be changed even after the

world{wide web browser has rendered them by calling a function, which replaces the existing image

with the new one, for the event mouseOver

45

of an image object. However, it is still not possible to

change the document text after it has been displayed. In addition, events can be used to monitor

the student's activities.

44

A plug{in is a native{code extension of a world{wide web browser.

45

This event is triggered whenever the user's mouse pointer is over an object which supports the event.

[Chapter 3] Techniques 51

+

Local

JavaScript code is executed on a local computer, thus not requiring an internet connection. With

Netscape's Navigator it is also possible to set and read Cookie values without an HTTP server,

however Microsoft's Internet Explorer 3.x does not support this functionality.

�

Standard

JavaScript was solely developed by Netscape and is currently not standarised by an independent

institution. Although Microsoft has included most of JavaScript's features into its world{wide web

browser, the problem of proprietary commands is still not solved.

�

Modular

As JavaScript combines exercise texts and source code in one �le a tutorial system can hardly be

modularised, for example in separate student, tutor, and expert models. Consequently, JavaScript

should only be used for a basic adaption or student monitoring procedure rather than for complex

student modelling as demanded by intelligent tutoring systems.

�

Implementation

In general, JavaScript is a well{de�ned scripting language which is already used by many world{

wide web sites. However, I had various problems while writing the tutorial system and development

toolset Tootsie: for example, a system which was running with one version of the Netscape Navigator

did not operate with the next release. Erroneous implementations of the JavaScript interpreter

unfortunately hinder the development of JavaScript based world{wide web documents. Thorough

tests on various platforms are therefore inevitable.

�

Programming experience

Development of JavaScript applications requires basic programming experience.

�

Document size

If JavaScript is used for complex data processing and computation, the size of a world{wide web

document will grow because the source code is included in a document. With slow internet com-

munication facilities this can a�ect the usability of a system, so the complexity of a tutorial system

is restricted. In JavaScript 1.1 a source �le, which is stored and loaded separately, can be de�ned,

however this functionality requires a JavaScript 1.1{enabled browser.

�

Cookie acceptance

Many world{wide web users refuse to store Cookies on their hard disk or in the home directory.

However, tutorial systems often require personalised data which was collected from the student

during more than one session in order to follow the learner's progress. The use of Cookies should

therefore be evident to the students.

�

Printing documents

Document text which is displayed on screen by using the write method cannot be printed. There-

fore, write should only be applied for contents which are individually chosen for a student.

3.6 Java

All the previously mentioned techniques had to rely on HTML and the accompaning web browser for

presentation and operation in the world{wide web. CL{HTTP, plug{ins and JavaScript, all use either

HTML and the world{wide web browser as their graphical interface or are embedded into an HTML

document. The programming language Java on the other hand is able to run independently of the web

browser and HTML, but still o�ers the ability to establish data connections to the internet. In the

following sections I will introduce the programming language Java, whose revolutionary concepts have

greatly in
uenced the development of the world{wide web over the last three years. As before, I will

mainly concentrate on the advantages and disadvantages in regard to tutorial systems, and I will also

discuss two examples, that already use Java in educational software.

52 Java [Section 3.6]

3.6.1 Java Basics

The programming language Java was invented by James Gosling at Sun in 1990, when he and his team

were looking for a language that was more appropriate for writing consumer electronics software than

the existing languages C and C++. At that time C++ was not yet standardised, while C was missing

the modular and object{oriented program design of C++. In addition, it is still necessary to recompile

applications that are written in C or C++ when transfering them to another system platform. The

developers of Java hope now that all these disadvantages will be resolved, because Java is a small,

reliable, architecture{independent language, that is already prepared for internet programming, because

methods for accessing the world{wide web are included in the API

46

package by default. Java programs

are available in two forms: either as a stand{alone application or as a Java applet. The latter only runs in

the context of a world{wide web browser, and therefore it is rendered as an inline object in the browser

window. Java applets extend the possibilities of web browsers as well as plug{ins do, but as a virtual Java

machine is part of modern web browsers, they do not have to be separately installed, and their usage is

hardly limited, especially not to a certain user group. According to [Flanagan, 1996] Java combines

the following characteristics:

� Simple

For most programmers learning Java is easy, because its syntax and code structure is closely related

to C and C++. In addition, some of the more di�cult features of C and C++ have been removed,

like operator overloading, pointers, or the compiler and link control of the C preprocessor section.

However, an absolute beginner in programming, which many content providers of tutorial systems

certainly are, will still have his problems in mastering Java. Consequently, the lack of time for

learning Java will restrict its usage as a core technology of tutorial systems amongst unskilled

system developers. However, this should not be the sole reason to reject Java, as its inherent

internet functionality and its possibilities of direct user manipulation can hardly be replaced by

another technology.

� Object{oriented

In general, the object{oriented programming model, which is more or less used by HTML 4.0,

Common Lisp, and the courseware applications as well, promises modular and reusable code, which

was one of the premises of Java. In contrast to C++, Java has already incorporated the object{

oriented approach: most \commands" are actually methods of classes. At �rst, programmers who

are accustomed to C may have di�culties in adopting the new way of writing codes, but they will

soon realize that object{oriented programming is often closer to reality.

� Distributed

Java contains class methods for connecting to a socket (to establish a reliable stream network) or

accessing a internet resource by an URL. However, it does not o�er services like CORBA

47

, as this

would go beyond the scope of Java. For a tutorial system the available methods certainly cover

all required communication needs, but it is advisable to consider implementing a link management

facility, which the world{wide web does not o�er.

� Interpreted

The Java compiler generates platform{independent byte{code

48

, which is then executed by a

platform{speci�c interpreter and run{time system on the client's machine. As the advantages of

Common Lisp (page 28) have already shown, an interpreted language like Java enables rapid pro-

totyping and easy experimentation, because compiling the code and linking the libraries is not

necessary anymore. However, due to performance reasons many environments that run Java appli-

cations include a just{in-time compiler as well, which translates the byte code into native machine

code. For a tutorial system however, there should be no performance di�erence between interpreted

and compiled Java code.

� Robust

Due to automatic garbage collection, exception handling, and the lack of pointers, Java development

46

Application Programming Interface.

47

Common Object Request Broker Architecture.

48

Unfortunately \[. . .] the byte{code is still partly erroneous (p76, [Sackl, 1997])".

[Chapter 3] Techniques 53

is more robust than C or C++, but still the programmer is responsible for writing software that

is easy to maintain and stable. A tutorial system especially requires a robust implementation, as

user acceptance largly depends on an error{free learning environment. The importance of a robust

implementation can be seen in software development where it is common to plan a third of the

project time for de�ning and designing the project, and another third for testing. The remaining

time is then used for coding and installing the system.

� Secure

Unfortunately the missing organisational structure of the internet makes abuses very simple: data

can be collected, modi�ed, or replaced at any node of the network. As Java is executed on a

local machine, one of the key design issues was to make downloading and running Java applets as

secure as possible. A byte{code veri�cation process is used to prevent illegal code, stack over
ow

(or under
ow), incorrect register operations, or illegal data type conversions. In addition, with a

separate name space for downloaded classes it is ensured that standard Java classes cannot be

overwritten or replaced. For security reasons and in contrast to stand{alone programs, Java applets

do not have the right to write on the user's hard disk. Therefore, [Sackl, 1997] rejects applets in

his prototypal implementation of a communication tool for workgroups, and uses a Java program

instead. With the introduction of \trusted applets"

49

however, which have the same rights as

local Java programs, the known user interface of a world{wide web browser does not have to be

replaced by a proprietary interface which is required when using a Java program, and speci�c user

data can be stored and retrieved on the user's computer, thus relieving the server from managing

various students' report or log �les. According to [Sun Microsystems, 1997] the later releases of

the trusted applet spezi�cation will provide more sophisticated security policies, including greater

granularity in the allowable trust levels.

� Architecture{neutral

By using Java software developers hope that one day it will be possible to write programs that can

be transfered between to di�erent computer platforms without modifying the source or executable

�le. According to [Flanagan, 1996] the internet will therefore become the computer itself as the

never{ending discussion on the network computer promises. Thanks to the byte{code format Java

programs can run on any computer platform as long as a Java interpreter and run{time system

exist. For software developers this is very important as it no longer limits their programs to just one

platform. Instead, their applications can now be distributed for a broader user group without any

modi�cations. Like CLIM Java uses an abstract windowing toolkit (AWT) to design graphical user

interfaces for platform{independent Java programs. This toolkit must have the ability to \adapt"

to the current user environment automatically. Unfortunately this technique coincides with the

restriction of forbidding platform{speci�c window operations: the smallest set of window functions,

that are common in all the di�erent user interfaces, can be used. In Java itself, platform{independent

graphical user interface is supported by creating platform{dependent \peers" for each of the classes

and components of the abstract windowing toolkit ([Flanagan, 1996], p269). With \Swing" Sun

has recently introduced a new extension to the AWT which o�ers two alternatives: a Java program

either provides the same look{and{feel as any other application for a particular computer, or it

consists of special cross{platform components that are equally presented, no matter what operating

system they are running on (see [Sun Microsystems, 1998a]).

� Portable

In contrast to C and C++ the sizes of data types are exactly speci�ed in Java, as well as the

operations that can be used for a single data type. This also limits the possibilities of errors, and

increases the chances of a architecture{neutral implementation.

� High{performance

Although just{in{time compilers already exist, Java is mainly an interpreted language. Therefore,

it is 20 times slower than C/C++{compiled programs, but according to [Flanagan, 1996] faster

than scripting languages like Perl. For tutorial systems especially the performance of the underlying

49

With the help of encryption technology \[. . .] it is possible to load a trusted applet (one that can run without severe

security restrictions) over an untrusted network as long as you trust the source of the applet (p200, [Flanagan, 1996])".

In general, applets \[. . .] loaded into a Java{enabled browser cannot read [write] �les. Sun's appletviewer allows applets

to read [write] �les that are named on the access control list for reading [writing]. [. . .] However, an applet can maintain

its own persistent state on the server side ([Sun Microsystems, 1998b]).

54 Java [Section 3.6]

programming language is not important, because these systems are waiting for a student's reaction

most of the time, and thanks to Java's multithreaded design, processor resources are not wasted,

when, for example, waiting for an internet connection. However, if many computations are necessary

and the application itself does not require world{wide web accessability, then depending on the speed

of Java just{in{time compilers, a di�erent programming language will be more feasable.

� Multithreaded

Java supports the use of multiple threads

50

, which can be executed simultaneously, by o�ering

their own class de�nition. Synchronization primitives are also included to handle the accesses to

mutual system resources, which must be used exclusivly by the di�erent threads. They are based on

the monitor variable concept, which was introduced by C.A.R. Hoare in order to replace Dijkstra's

semaphores which cannot prevent certain situations leading to deadlock or starvation. Multithreaded

tutorial systems improve the performance by the aforementioned technique of doing further com-

putation while downloading, or even pre{loading, the following exercise page. Therefore, a tutorial

system developer should apply multiple threads to make the response time of the system as short

as possible. However, implementing this technique will require advanced programming skills.

� Dynamic

\[. . .] Java loads in classes as they are needed, even from across a network. Classes in Java also have

a run{time representation. Unlike in C or C++, if your program is handed an object, it can �nd out

what class it belongs to by checking the run{time type information. The run{time class de�nitions

in Java make it possible to dynamically link classes into a running system ([Flanagan, 1996],

p9)."

[Sackl, 1997] sees the disadvantages in Java not primarily in the programming language itself, but

�rst and foremost in the support for developers. Java is a fairly new language, which must still prove

whether it can ful�ll the high expectations that are set into it. In the beginning professional development

toolsets were rare, and so other languages were prefered, but this has now changed. In addition, the new

Java Development Kit by Sun provides extended features, that have been incorporated in regard to the

experiences that were made by developing applets for the world{wide web. So, JDBC

51

was introduced to

enable Java to execute SQL statements, and JDBC continues the tradition of the �rst Java speci�cation to

be portable, that means that JDBC is not restricted to one database only. JDBC establishes a connection

with a database, sends SQL statements, and processes the results, thus o�ering the abilities of standard

databases to any Java application. For instance, tutorial systems could use a database to store user models

or exercises, to query the students' progress or to keep the exercise texts independent and modi�able from

the system code. In comparison to other world{wide web techniques Java o�ers real interactivity for the

user. [Anderson et al., 1995] summarizes the requirements for the interaction with a interface:

� \Actions taken to the interface must be passed through the tutor. The tutor needs to know what

actions students have taken so it can follow students along the solution path they are pursuing and

provide appropriate guidance."

� \The tutor must be informed about the consequences of any interface actions for the state of the

interface. Basically, the cognitive model needs to maintain in its working memory a representation

of the interface that the students see."

� \The tutor must be able to perform interface actions itself."

Like in plug{ins, user events will only be triggered if they happen in the content area of the applet, or

if they have been passed on by LiveConnect. However, the aforementioned requirements are still best

achieved with the help of Java: like plug{ins the contents of an embedded applet can be continously

changed as an applet is independent from its underlying browser, but although plug{ins o�er the same

level of interaction, they do not have the possibility of keeping a connection to the server constantly

open. If the tutorial system is realized with the help of a database, this di�erence will be an especially

50

Threads are lightweight processes that do not require the organisational overhead of standard processes. Often threads

must share the same system resources, while processes can rely on their own memory space etc.

51

It is thought of standing for Java Database Connectivity.

[Chapter 3] Techniques 55

important argument for the use of Java. In all other techniques, i.e. HTML, CL{HTTP, CGI programs

and JavaScript, the content of a world{wide web page cannot be modi�ed, once it has been rendered

by the web browser. The only exceptions are JavaScript event handlers, which can display dialog boxes

or change the values of form controls, and dynamic objects, which for example will be able to change

their position in a page. For further information and, for the newest Java spezi�cation I recommend the

documents by [Sun Microsystems, 1997] be frequently read.

3.6.2 Examples for Tutorial Systems in Java

For a tutorial system in the world{wide web the use of Java is recommended if complex programs must

be realized. The following examples will show what bene�ts Java has for educational software: previously

unthinkable types of tutorial systems, like simulations, can now be made available in the world{wide web.

In addition, Java applets can be combined with all other techniques to implement a more intuitive user

interface. At the time of writing I do not know of a tutorial system, which was solely programmed in Java

as a stand{alone application, but many examples of Java applets can be found. Although programmers

have focused on applets for special textual or graphical e�ects, the number of educational applets is

growing, and can be accessed from the Java applet repository at Gamelan

52

.

3.6.2.1 Example: PUSH Graphical User Interface

PUSH, a document retrieval system for SDP manuals, has already been introduced in Section 3.4.2.3,

where I have focused on the CGI programs that are necessary to access the underlying Prolog database.

Retrieving SDP manuals is also possible by using an interactive graph, whose document nodes are

organised in a hierarchical tree structure which contains all the relevant dependencies. Direct user

manipulation, which enables the user to browse the information domain by clicking on the various

graph nodes, and creating graphs on{the{
y, whenever links are selected in the text document beneath,

cannot be implemented as a CGI program. Therefore, the programming language Java was chosen (see

[Espinoza, 1996]). Firstly the Java applet is intended to give the student orientational guidance in the

information space, and secondly it is an alternate way to access the manuals. The data, which the student

is interested in, can be changed either by selecting a link in the document text or by clicking on its

represented object in the drawing area of the applet. The focused object is then automatically centered

in the graph and neighbouring objects and relationships are added. For beginners, this option provides

an easy way to browse the information domain without losing orientation, a problem which frequently

arises in unstructured hypertext environments. The graph applet is displayed in a separate frame of the

browser window to make it independent from the remaining text, and to reduce download times as the

applet must just once be loaded into memory. The graph data itself is provided by the Prolog database,

whose query results are written to a �le that is remotely read by the Java applet: \The reason that a

socket connection

53

is not used is that at the time of implementation (fall 1995), the Netscape browser

was not equipped with this functionality ([Espinoza, 1996])". The PUSH interface is interactive on

several levels, mainly because the user's ability to understand new information depends not only on the

user's previous knowledge, but also on the spatial representation and accessability of the domain. By

o�ering the possibilities to retrieve SDP manuals in di�erent ways, i.e. menus and graphs, the various

user preferences can be satis�ed (see [Espinoza & H

�

o

�

ok, 1996]). In an evaluation test two versions of

the PUSH system were examined by Kristina H�o�ok: the adaptive one o�ered the same features as have

been mentioned here and in Section 3.4.2.3. The non{adaptive interface was very similar to the other

system in the test, except that all the information entities of a new manual page were closed when it

was displayed for the �rst time. H�o�ok found that the adaptive system was prefered by the students,

but she correctly remarks that such comparisons can be questioned as the underlying design of the test

systems is di�erent, thus in
uencing the test results (see [Espinoza, 1996]). However, in that test the

authors believe that they found a way to prevent that obstacle as the non{adaptive version is also \a

good system in itself". I do not agree with the last statement: as I said before the document text was

collapsed when it was presented to the student the �rst time in order to prevent an information over
ow.

Consequently, the student had to extend each topic in which he was interested, so more user actions

52

http://www.gamelan.com/.

53

The Common Gateway Interface programs communicate by a socket with the database, see page 49.

56 Java [Section 3.6]

were necessary and information could be missed. This certainly modi�ed the preconditions of the evalua-

tion and thus the outcome of the test as well, but the bene�ts of adaption remain undisputed nevertheless.

3.6.2.2 Example: Powersim Simulations

Powersim is a Norwegian software company that produces development toolkits for world{wide web

based simulation programs. The software package Powersim Metro JX Suite contains a tool for building

a simulation, called Powersim Constructor, and a simulation server Powersim Metro Server, which is

responsible for the communication and interaction with the clients. The clients themselves are world{

wide web browsers that must be able to interpret Java code, because the user interface of a simulation

is realized as a Java applet (alternatively, Microsoft's proprietary ActiveX can be integrated). The main

intentions for writing the software were that the e�ects of future changes to a running system can be

visualized and tested beforehand. Various scenarios can be examined and new strategies tried before

an organisation is fundamentally restructured. A simulation is based on a network structure consisting

of elements and links, whose overall concept was adopted from the \system dynamics model" which

was developed at the M.I.T. Elements are described by mathematical equations, and according to these

their behaviour is simulated by the system. Constructor supports the developer in building a system: it

provides a drag{and{drop user interface, that can also integrate video and audio �les into a simulation,

and contains standard elements, which are known from the \system dynamics model". The Metro Server

is responsible for the communication and synchronization between the client's user interface and the

server's simulation engine. A persistent data stream is kept open during a user's session, so it appears

to the user that the simulation is running locally, while the server is doing all the calculations. In this

respect Java is needed for establishing the connection as well as for the design of an interactive graphical

interface, because the results of the simulation, whose changes are transmitted from the server to the

client, must be displayed. The bene�t of a server{based simulation is that the user's interactions can

be continously monitored and analysed by the developer, as data must be written on the server's hard

disk due to the aforementioned applet security scheme. The Metro Server supports up to 100 clients

simultaneously, allows di�erent roles for the users, and can execute multiple models at the same time.

For presentations a simulation can also be started without an internet connection, but especially the

global accessibility distinguishes the Powersim products from stand{alone programs. In regard to tutorial

system development the simulation software is primarily intended for business adminstration courses, as

the examples at Powersim's world{wide web site show. However, other simulations, whose domain can

be mathematically described, are possible.

3.6.3 Discussion

In general, all types of tutorial systems can be implemented in Java, as it o�ers all the possibilities

of a programming language. The focus is on simulations and interactive applications, which cannot be

supported otherwise: most of the previously mentioned techniques only provide static contents (HTML,

CL{HTTP, CGI, JavaScript) in conjunction with basic event handlers (JavaScript).

+

Availability

Java just{in{time compilers are currently included in most world{wide web browsers, so the user

group which can access Java applets is large enough for an implementation of a tutorial system

solely in Java. In addition, Sun o�ers, with the program \appletviewer", the possibility of running

Java applets outside a world{wide web browser.

+

Portability

One of the primary goals of Java is to be portable to various computer platforms. At the moment

this ambitious plan has been ful�lled, however the latest arguments between Microsoft and Sun

about the Java standard increase worries that proprietary extensions will be made one day.

+

Standard

At the moment there is one authority which is in charge of the Java standard. System developers

can therefore rely on the publications and documentation by Sun.

[Chapter 3] Techniques 57

+

Interactivity

With its full control over the applet window in a world{wide web browser Java is able to o�er

real interaction between the system and the user. Various user events can be triggered, so the

implementation of simulations and interactive graphs is possible. In addition, Java is a programming

language which supports the development of complex applications (in contrast to scripting languages

whose abilities are often restricted in favour of easier programming).

+

Local

Java applets which do not require a permanent internet connection can run locally on the user's

computer, and so they do not increase the work{load of world{wide web servers (in contrast to CGI

programs). Stand{alone programs are by de�nition locally executed.

+

World{wide web access

Java includes classes and methods to establish an internet connection, so in contrast to the afore-

mentioned technologies it is possible to replace the user interface of world{wide web browsers with a

more suitable design for a particular course or tutorial system. As Java can communicate with exter-

nal programs, like databases etc., it also integrates their functionalities, and provides a world{wide

web interface for them.

�

Exercise{speci�c reactions

If the exercise texts and the source code of a tutorial system are separate from each other (or if

the source code is not available like in many commercial systems), it may be necessary to provide

a method in which reactions of the tutorial system on the student's activities can individually

be speci�ed for an exercise: either the source code of the tutorial system must be modi�ed or a

\scripting language" included in which the reaction to various situations can be de�ned. In general,

this is not required if system code and document texts are combined in a single �le, like in HTML

and JavaScript documents, as the functions, which represent system reactions, can be selected and

adapted to the current needs.

�

Programming experience

A system developer needs advanced programming experiences when using Java.

3.7 Conclusion

A good tutorial system which is implemented on the world{wide web combines the bene�ts and possi-

bilities which each technique o�ers. The following enumeration presents ideas for integrating the various

technical suggestions which I discussed in this thesis:

� A resource base of exercises and documents, in which the student can discover an extensive area

of the course domain (including links to external sources), is connected by the hypertext language

HTML, so the previously independent information forms a coherent and exploratory learning envi-

ronment.

� The use of an external link database, which is best realised with the help of a CGI application, or

Hyper{G, is therefore recommended as link management becomes easier and more stable.

� The CL{HTTP server should in particular be considered by tutorial system developers if a knowl-

edge base written in Lisp exists.

� Real interaction between system and students is only possible with plug{ins and preferably Java

applets. Within their borders of the browser window they provide the necessary functions to react

individually on the users' activities. If the students' problem solving process is monitored inside

these embedded objects a global, i.e. not exercise{speci�c, student model can be created by storing

the retrieved data on the server's hard disk. The same can be made for information which is, for

example, collected with JavaScript from outside the objects by using LiveConnect. It establishes a

communication link between JavaScript and the Java applet, so a JavaScript function can generate

a data string from the monitored values which are then transmitted to the applet by calling a Java

class method.

58 Conclusion [Section 3.7]

� In general, JavaScript is better suited for checking the contents of HTML forms and doing basic

computations before data is transmitted to a CGI application or the knowledge base of a CL{HTTP

server, but it can also be used to permanently store students' preferences like the design layout of

the table of contents (see the explanation of the Cookie variable tootsie cont on page 68).

� If a CGI application is responsible for storing a student model, data of the learner's problem solving

can be collected by JavaScript event handlers. Whenever the student solves an exercise this data

can be added to the CGI request method.

� Like Java CGI programs are well suited to implement an intelligent tutoring system on the world{

wide web. Both can access expert, student, and tutor models which are separately stored from the

HTML documents that represent the user interface of an ITS.

These technical recommendations for a good tutorial system depend on the underlying type of system: a

simulation requires more interactivity and complex computations than a traditional CAI program, so it

is better written in the programming language Java. In general, the separation of the system architecture

into user interface, student model, expert model, and tutor model is suggested, however their weights

in the overall system structure are subject to the didactic principles: they specify how knowledge is

presented, how much feedback is given and how the di�erent motivational dispositions of students are

supported. System developers should therefore early involve the intended user group in the design process,

in particular for the implementation of an adaption process and a cooperative work environment.

Chapter4

Implementation

4.1 Tootsie

In the previous chapters I have discussed various techniques which can be currently used to implement

an interactive, adaptive, and even intelligent tutorial system in the world{wide web. I discussed their

advantages and disadvantages, and presented examples of tutorial systems already in use. Nevertheless, I

have not been able to follow the design process of such a tutorial system, partly because some techniques

have not yet been tried in real life or their code is copyright protected. I have therefore decided to work on

a prototypal implementation of an adaptive tutorial system. The following chapters will cover the design

process, give an overview of the system's features, and �nally discuss the system's strength and limitations.

4.1.1 Tootsie Basics

4.1.1.1 Tootsie System Components

At the beginning of the design process the main goal was to develop a prototype of a tutorial system

to accompany a lecture on Probability Theory and Statistics for computer scientists at Technische

Universit�at M�unchen. I quickly found out that working on a tutorial system, especially its exercises,

is often a repetitious development process. This means that many development steps occur quite

frequently, whereas the core design of a tutorial system is often a unique implementation. Programming

exercises for the system and adding them to the existing environment can be tedious, error{prone and

time{consuming for a developer who has to do certain steps for each of the exercises again and again.

Therefore I decided to split up the tutorial system into a development toolset, which will help in creating

exercises, and a user interface, which the student will see (symbolised in �gure 4.1). A side{e�ect of this

separation of concerns is that the toolset can now be used more
exibly. The tutorial system is no longer

limited to exercises on Statistics; as long as the developer appreciates the restrictions of the technique

another course can be designed.

4.1.1.2 Classi�cation of Tootsie

The design process started with an analysis of what the student is supposed to learn during the course. As

no preliminary knowledge of Statistics is required, the student will be introduced to the basic principles of

probability theory and statistics, for instance Kolmogoro�'s axioms, Bayesian laws, and hypothesis tests.

In this case drill{and{practice programs are the most suitable choice. The advantages and disadvantages

of classical drill{and{practice tutorials have been outlined in Section 2.2.1, and based on these I made

the decision to add more functionality to my system in order to compensate for the di�erent needs of the

students:

� Hypertext environment

My system is based on the hypertext mark{up language HTML which makes it possible to be

accessed not just within the university but also from outside. The user can select a hypertext link

59

60 Tootsie [Section 4.1]

User

Exercise

Developer’s Ideas

Toolset

User Interface

Frame

Figure 4.1: Architectural scheme of the Tootsie environment. The system developers enter their exercise

ideas into the toolset which creates the appropriate pages and an organisational framework. The pages

are displayed in the user interface.

to get more information from the glossary, to ask for help, to choose a di�erent chapter of the course

or to change to the cooperative work area of the system. Therefore the often strict linear
ow of

drill{and{practice programs can be in
uenced by the students themselves.

� Table of contents

From the table of contents the user will be able to select any desired chapter. As the table of

contents is not automatically generated, but manually created by the developer, certain chapters

or exercises can be hidden from the user's access. This functionality breaks with the guided tour

approach of classical drill{and{practice tutorials.

� Add{ons

A pocket calculator and value tables have been integrated into the system, thus the user does not

have to leave the workspace for simple calculations.

� Cooperative work area

The cooperative work area o�ers a basic chat tool and a discussion group. Here I have tried to

create the cooperative workspace which is often demanded by tutorial system theorists. Section

4.3.2 explains their functionality and their intended use in{depth.

� Exercise wizard

In general, the exercise wizard is an overview page detailing what the user has done up{to{now

and which exercises are recommended to be visited next. It was introduced to give the user a new

starting point when they become \lost{in{hyperspace", a negative side{e�ect of hypertext systems

about which a number of writers have frequently complained. Section 4.3.1.4 gives more details of

the information o�ered by the exercise wizard.

� Adaption

Tootsie o�ers a simple adaption layer to the developer. According to the user's input the adaption

variables will be set and the globally stored information can be accessed by the system. How these

values are interpreted by the system and what the reactions are, must be de�ned and programmed

by the developer.

It is not correct to call my system a traditional or even intelligent tutoring program.With the classi�cation

of Section 2.2.2 in mind, a traditional tutoring system introduces a complex subject, asks questions of

understanding and proceeds di�erently based on the student's answers. With the introductory course on

Statistics I had planned mainly to train the student's abilities to solve exercises in the �nal exam at the

end of the semester, so the complexity of the subjects is low and is covered in the lecture. Additionally, the

system architecture is di�erent from intelligent tutoring systems as Section 2.3 shows. Basically it is still

[Chapter 4] Implementation 61

possible to transform my system into a more advanced CAI program by using a more complex teaching

scheme, introducing new types of exercises, or adding new adaption variables. The
exibility of my system

is therefore discussed in the extra Section 4.2.5. The di�erences between my system and an intelligent

tutorial system cannot be so easily compensated for. As the classi�cation shows, an intelligent tutoring

system is based on theories of cognitive psychology and arti�cial intelligence. Often a knowledge{based

system is the fundamental core of the program. The modi�cations to my system would be complicated

and they would not conform to the currently used technique, as accessing external applications is not

supported by JavaScript. Java, CGI programs or the CL{HTTP server are therefore better suited to

query a knowledge base and store detailed student's pro�les.

4.1.1.3 Implementational Technique

What kind of technique are we using? I have decided to base the tutorial system on JavaScript and

Cookies. Section 3.5 describes the technique precisely, so I will summarize here the reasons on which my

decision was based:

� Availability

JavaScript is part of modern world{wide web browsers, so most users can access documents which

contain JavaScript source code.

� Portability

My targeted user group has access to the world{wide web with Netscape Navigator 3.x only, so the

di�culties with Microsoft Internet Explorer are not considered as a major problem. Nevertheless it

may be necessary to modify my system to ensure that it will also run with Internet Explorer.

� Integration

In world{wide web documents that contain JavaScript code other technologies like plug{ins, CGI

program calls, and Java applets can be integrated, so functionalities which JavaScript does not

o�er are then available. A communication link between the di�erent objects is established with

LiveConnect.

� Local

With Netscape's Navigator 3.x students have the possibility to download the tutorial system �les

and access them from their hard disks.

� Intended use

In general, Tootsie is a drill{and{practice program with additional functionalities such as user adap-

tion (see Section 4.2.4) and the exercise wizard (see Section 4.3.1.4), which could be implemented

with JavaScript and Cookies. Complex learning environments however, like intelligent tutoring sys-

tems or simulations, require the possibilities which only Java, or CGI and CL{HTTP in conjunction

with external programs, can o�er.

� Time{factor

The work on this master's thesis was scheduled for a six months period. In that short amount

of time JavaScript promised the most and best results as learning a new programming language

was not required and as organisational details, for instance setting up a CL{HTTP server, did not

in
uence the start of coding.

� Novelty

At the time of writing I am not aware of a similar system which uses JavaScript for user adap-

tion and course management to the extent that Tootsie does. Consequently, trying and examining

the possibilities of JavaScript promised a particular impulse for the on{going work on the thesis.

The outlook in Chapter 5 will also suggest further extensions and modi�cations to my prototypal

implementation.

The main reasons for rejecting the other techniques were:

62 Tootsie Development System [Section 4.2]

� HTML 4.0

All the proposed HTML 4.0 extensions have not been added to the standard yet, so most of the

browsers, which are currently in use, cannot interpret the new HTML tags. Additionally none of

the introduced link types provide the functionality to adapt to the user's needs.

� Knowledge{based HTTP{server

The recommended CL{HTTP server shows how easily existing knowledge{based tutorial systems

can be published in the world{wide web without any fundamental changes. However, as I had to

design a tutorial system from scratch, I did not have a knowledge base on which a CL{HTTP server

could be built on. Unfortunately a new knowledge{based system cannot be implemented within a

few months.

� Plug{in

External tutorial systems written with development tools like Macromedia Director can only be

accessed if the appropriate plug{in is installed. Unfortunatly this is not the case at the computer

centre of the Technische Universit�at M�unchen. As students from that university are the targeted

user group, plug{ins were rejected at an early stage of the development.

� CGI

The main reasons against CGI applications are the higher work{load on the server, which will result

from the number of queries by the di�erent user clients, and the request{response protocol which

hinders real interaction between student and system.

� Java

Most of the functionalities, like interactive graphs or basic tools, can also be implemented as Java

applets which are then integrated into the tutorial system. Thus, it was not necessary to design

a system which was solely coded in Java. In addition, the commonly known user interface of a

web browser provides a suitable navigation control of the tutorial system, so enhancements of the

interface which can only be realized in Java were not necessary.

4.1.2 Overview

The next chapters describe implementational details of the toolset and the user interface of the tutorial

system. I will show what preparation was needed, describe how the toolset is used and explain how

exercises, which have been generated by the toolset, can be extended for more user interaction. In the

chapter on the user interface I will answer the questions concerning the use of the cooperative work area

and how the system assists the student.

4.2 Tootsie Development System

By programming the toolset for the tutorial system Tootsie I avoid making system developers repeatedly

work on the same tasks for a number of exercises. For example, JavaScript functions which specify the

reactions of the tutorial system on user's input are stored within the HTML �le, so it is inevitable that

certain code sections appear in many �les of the system. If these are manually copied by the system

developers the risk of errors is high. The toolset consequently reduces this risk by o�ering a user interface

in which all the relevant data can be entered by the authors.

4.2.1 Preparations

4.2.1.1 Step 1: Technique

Some preparations must be made before the tutorial system toolset can be used. The developers must

�rstly ask themselves what type of course they want to write. They should carefully consider whether

JavaScript and Cookies are appropriate for their needs. In general, this technique is recommended for

[Chapter 4] Implementation 63

exercises which train the students in basic skills, but not for courses which include complex problem

solving. A course generated by the Tootsie development system is therefore best combined with an

introductory lecture which provides basic knowledge skills needed in a course. I also recommend asking

questions of the knowledge domain in the form of multiple{choice exercises, so student monitoring can

be based on event handlers.

4.2.1.2 Step 2: Exercises

Once the technical problems have been discussed the developer must prepare the exercises and decide in

which order these should be presented to the students. In its current version the toolset o�ers four types

of exercises:

� Single{choice single{correct

An answer must be selected out of �ve di�erent choices of which only one is correct.

� Multiple{choice multiple{correct

At least one answer must be selected out of �ve di�erent choices of which more than one can be

correct.

� Any{answer question, i.e. free format answers

Up to three text entry �elds, which can be completed by the students, are displayed.

� Hints{and{feedback

This type of exercise neither asks questions nor expects answers: it instead provides explanations,

gives feedback or introduces a new subject or chapter.

If system developers need additional types of exercises they must write the appropriate programs and

add these to the toolset environment. Section 4.2.5.2 explains this subject. [Hall et al., 1996] describe

the process of building a resource base of exercises and course documents, which involves collecting,

organising, indexing, and linking many types of information, in one phrase:

[. . .] reject nothing. It is essential to gather together all the information that might be relevant for a

particular subject area. In the initial stages authors should not have any pre{conceived ideas about

what is or is not going to be relevant or useful for their particular task [. . .]. (p106) The important

thing is not to focus too closely on that particular task [that is envisaged for the users] during the

resource{base building phase. The teacher instead should collect all the resources which either are

relevant or might be relevant [. . .]. (p107)

Adding hypertext links to the generated exercise �les is supported by the Tootsie development system.

Developers must design a network of links, which represents the intended course
ow. Their responsibility

is to create a link structure which best suits the di�erent students' learning abilities. Five di�culty

levels can be chosen which should provide a more individual learning environment for novices and

more experienced students. These levels can alternatively be used to adapt to the motivational learning

characteristics of individual students, which can either be failure{ or success{driven.

4.2.1.3 Step 3: Resources

The developer must adjust the resource variables of the toolset. These are necessary to adapt the

toolset and the tutorial system to the current environment of the computer system on which they are

running. The variables do not e�ect the course or the learning methods and they are not involved in

building a resource{base as mentioned before. When the development system is started it will look for

the resource �les in which information of the toolset and tutorial system environment, e.g. source and

target directories, is stored. Appendix A describes each resource variable in detail.

64 Tootsie Development System [Section 4.2]

4.2.1.4 Step 4: Templates

The template �les de�ne a general layout pattern for each exercise type, but developers can nevertheless

adjust the HTML code of the resulting exercises to their needs or add new JavaScript functions. A

positive side{e�ect of templates is that similar code sections, which frequently appear in exercise �les,

can be recycled: if they are once incorporated into a template, they will then automatically be copied

to any new exercises created. In general, this reduces the risk of code errors that may occur if the code

sections are manually copied. Whenever authors of tutorial systems use the development system in writing

exercises, the template �le is �lled with the input of the exercise forms and stored as a new exercise in the

Links directory of the tutorial system. Templates therefore contain special placeholders, called tokens,

which are replaced with the information entered by the developer. The tokens are de�ned in the resource

�les and must be altered if the token names change. Despite the bene�ts of templates it is recommended

that the interaction between the user and the tutorial system be enhanced by adding individual code to

exercises provided this does not interfere with existing JavaScript functions. Consequently, the student's

problem solving can be better monitored and analysed: for example, in a complex exercise, in which text

entry boxes must be �lled out by the learners, the order in which the text is entered can be recorded,

and based on this information the tutorial system can react more speci�cally.

4.2.2 Toolset System Architecture

The toolset is divided into two di�erent groups of �les. Firstly, it contains the CGI programs written

in C which process the input forms of the user interface. These programs are not used by the tuto-

rial system except for the tools of the cooperative work area and the questionnaire. The developer

must copy the compiled CGI programs into a directory which can be accessed by a world{wide

web browser. The second group of �les is written in HTML, and de�nes the user interface and the

input forms of the toolset. It can be used with any world{wide web browser which is capable of JavaScript.

Tutorial system exercises will be stored in the directories which are de�ned in the resource �les of the

toolset. I recommend creating the following subdirectories in the root tree of the tutorial system: Links

for exercise �les, Applet for Java applets required by the tutorial system, Image for inline images, and

Glossar for glossary keywords.

4.2.3 Generation

The development system is started by loading the main screen of the user interface with a world{wide

web browser. On the left{hand side the table of contents, which lists links to various input forms, is

displayed, while on the right{hand side the workspace of the system developer is shown.

4.2.3.1 Step 1: Glossary

Before a glossary keyword can be used in an exercise it must be de�ned in the glossary form of the

Tootsie toolset. Once de�ned a registered keyword can appear in any introductory text of an exercise,

and a suitable hypertext link to the glossary text will automatically be set.

1. Keyword

The developer must enter a keyword which is not yet de�ned. The keyword must be spelt exactly

the same way as it will be used in future exercise texts.

2. Title

Optionally a title can be entered for the glossary keyword.

3. Explanation

The glossary text explains the meaning of the keyword. The developer can use HTML tags, but other

[Chapter 4] Implementation 65

structural information, like newline characters, will be lost. The commands image(<filename>) and

applet(<filename>) include in the text an image or Java applet with the name filename provided

these are stored in the image or applet subdirectories.

The lower section of the browser window, which is also called frame, shows an overview table of glossary

keywords, so the developer can see which keywords are already used. The contents of a glossary �le are

displayed if the View link is clicked.

4.2.3.2 Step 2: Exercises

\Documents should be organised according to whatever (hopefully multiple) structures are required.

[. . .] This is an important phase of the authoring process as this structure provides in many cases the

�rst and primary interface to the information, and as such will tell the user quite a lot about how

the author understands the structure of the information, and hence about the subject matter itself

([Hall et al., 1996], pp107/108)". Although this principle is very general, the author of a tutorial

system must nevertheless keep it in mind when writing exercises or introductory texts, particularly

because CSS which could provide the multiple document structures are not yet available. After selecting

an exercise the upper frame of the browser window shows an input form, while the lower frame displays

a table with exercises which have already been de�ned.

1. Title

The �lename of a new exercise will be created from the input of the title entry �eld. As exercises are

often part of an exercise section, it is reasonable to store each section in its own subdirectory tree.

A directory tree is de�ned by writing a hierarchy of section names, which start with the topmost

section, into the entry �eld. Section names must be separated by commas, and the hierarchy must

end with a unique exercise group

1

name. For directory and �le names only the �rst six letters or

digits of the section or group names are used. The title line of the new exercise will nevertheless

show the complete de�nition.

2. Glossary keywords

The system developer enters the keywords which must be looked up in the glossary, in form of a

comma{separated list. If a keyword is found in the exercise text a hypertext link to the glossary

entry will automatically be set.

3. Help (not available in hints{and{feedback)

If system developers want to provide help pages for the students they must enter the following code

into the help entry �eld: f#<levels>#<text>g. The help text <text> is added to each help page

whose help level is mentioned in the preceeding <levels>. The character # separates the di�erent

levels and text de�nitions, so it is not allowed to appear in <text>.

4. Text

Depending on the exercise type the introductory text must be entered and an appropriate question

asked. The text can only be structured by using HTML tags. The keywords image(<filename>) and

applet(<filename>) automatically add the object filename from the image or applet directories

to the exercise.

5. Answers (not available in hint{and{feedback)

Entry requirments vary according to the exercise type: for single{choice and multiple{choice exer-

cises up to �ve answers can be entered, of which the correct one(s) must be ticked. Any{answer

exercises require a question and the correct answer expected from the student. In addition, the

keywords image and applet can be used.

1

An exercise group is a collection of exercises which have the same title (e.g. they introduce the same knowledge units)

but di�er in their di�culty levels. An exercise section is a bundle of exercise groups which are part of a common topic

or goal.

66 Tootsie Development System [Section 4.2]

6. Di�culty

The developer is asked to rate the di�culty level of the current exercise from \trivial" to \di�cult".

As mentioned before the various di�culty levels of an exercise group can also be applied to provide

a learning environment based on the di�erent motivational characteristics of students.

7. Marked (not available in hint{and{feedback)

The developer must decide whether or not an exercise is marked. Only information of marked

exercises, e.g. whether it was correctly solved or how often it was tried by the student, is stored

in the Cookie variables of the tutorial system on which all the adaption rules and the individual

learning support depend. Unmarked exercises however are useful if it is necessary to introduce

students to a new topic, which is then completed by a marked terminal page. If an exercise group

contains a marked exercise, the group is also \marked", but this does not e�ect the status of

unmarked exercises of the same group.

The Generate... button calls the underlying CGI program, and a new exercise �le is created. A Reload

of the lower frame then shows the new exercise entry. The entries consist of a title line, a di�culty level

and an exercise type. By clicking on the View link the exercise page is displayed in the upper frame.

4.2.3.3 Step 3: Links

A new exercise is integrated into a tutorial system by setting hypertext links to other exercise pages.

In order to make this process easier for the system developer, an overview table of existing exercises is

displayed: if a Copy link is selected and a command button clicked, the necessary information will be

copied into the entry �elds of the input form. A screenshot of the actual form is shown in �gure E.1 on

page 101.

1. Exercise

When clicking on Page the text entry box will be �lled with the data of the exercise, whose Copy

link was previously selected.

2. Links

The course
ow depends on the \link rules", for which JavaScript code must be entered by the system

developer for each exercise. The rules will be executed whenever the student selects Continue...

in an exercise page. In addition, the following commands and JavaScript functions can be used:

� link(<filename>);

sets a link to the exercise <filename>.

� link(<group>);

sets a link to the exercise group <group>. From that group an exercise with the current

di�culty level is loaded. If such an exercise does not exist, the tutorial system will try to �nd

the \closest" one. This means that the di�erence between the current di�culty level and the

one of the closest �le is minimal.

� reset(<filename>); (only marked exercises)

resets the
ag of the exercise <filename> from successfully done to not done yet. The

function reset does not work with the current exercise.

� isset(<filename>) (only marked exercises)

checks whether the exercise filename has already been successfully solved. In this case the

function will return true or 1.

� isset(<group>), only marked exercise groups

checks whether any exercise in the exercise group <group> has already been successfully solved.

In this case the function will return true or 1.

� revisited (only marked exercises)

if a student has already solved the current exercise, the variable revisited will be set to true

or 1.

[Chapter 4] Implementation 67

� repeated (only marked exercises)

if students access an exercise again although they have already solved it, they will be asked

in a dialog box whether they want to repeat the same exercise. If they con�rm the variable

repeated will be set to true or 1, false or 0 otherwise.

� correct

if a student has correctly solved an exercise, i.e. all the answers correspond to those entered

in the input form of the exercise type, the variable correct will be set to true or 1, false or

0 otherwise.

� item[<index>]

is used as an abbreviation for reading the status of radio buttons, check boxes, or entry �elds

which the student can tick or �ll out in the current exercise. Each of the input objects has

an index number which starts with 0 for the topmost object and is increased by one for each

object beneath. It is important that for items of single{choice and multiple{choice exercises

comparisons like ==, != etc. are not allowed. In contrast to that, boolean operators, like &&,

|| etc., cannot be applied for entry �elds of any{answer exercises. If these restrictions are not

observed by the system developer, a JavaScript error message will be produced when students

access the tutorial system.

3. Comments

Comments or feedback which system developers want to give users on consecutive pages must be

de�ned in the following way: f#link(<filename>);#<text>g. <text> will only be shown if the

current exercise is successfully solved. Again, <text> can be structured with HTML tags and the

separating character # must not appear in <text>. Unfortunately <text> cannot be source{speci�c,

this means that any exercise which is correctly answered and has <filename> as its successor will

trigger the comment <text>.

Clicking on the Generate... button will modify the current exercise �le by adding the JavaScript code

of the link rules.

4.2.3.4 Step 4: Link Reference

If many exercises are linked together, the link structure of a course can become incomprehensible.

Therefore, the overview table of all established links assists the developer �nding the destinations of

source anchors. [Hall et al., 1996] also see the importance of avoiding chaos during the authoring

process (p110). Their hypertext system, whose link model is far more sophisticated than HTML, o�ers

two views: �rst a link index document, which is generated from the linkbase

2

and sorted alphabetically,

and second, various documents or linkbases, in which links are sorted according to their purpose (p111).

All the source pages are written on the left{hand side of the overview table, while their immediate

successors are on the right. By clicking on a destination the overview table will be scrolled to the

left{hand side position of the selected exercise. The digits which are written in superscript after the title

of an exercise denote the di�culty level of that �le. If there is an x instead of a number the target page

will be selected from the given exercise group according to the user's di�culty level.

4.2.3.5 Step 5: Table of Contents

The table of contents of a tutorial system is not automatically generated. This gives the developer

control over what can be directly be accessed by the students, in particular if students have to solve

introductory or unmarked exercises before they should proceed. In addition, advanced topics can be

hidden, so students do not inadvertently read these beforehand. A good idea is to include documents,

which are described by [Hall et al., 1996] as follows:

2

I.e. a database of links.

68 Tootsie Development System [Section 4.2]

Users need pointers to the important part of the material, which can only be provided in the context

of their task. Therefore documents which answer questions for the user such as \What am I doing

here as a student?", \what are the objectives and the aims?" and \how am I to go about achieving

those?" are not just \nice" but are vital for users to get the most out of their interaction with and

use of the information. (pp114/115)

The structure of the table of contents is de�ned by using HTML tags. However, the reserved space of a

table of contents is limited in the current version of the tutorial system Tootsie, so only a narrow list

structure is recommended. An exercise group is added by selecting the Copy link and clicking on the

Group button. Instead of the full title for each group only the last portion, generally the title of the �le,

will appear in the resulting table of contents.

4.2.4 Adaption

Most authors see adaptability as an important feature of tutorial systems for increasing acceptance levels

of students. In its most sophisticated form a student model is generated by the system

3

, but depending

on the used technique lower forms of adaptability can also be applied. [Wenger, 1987] explains three

forms of adaptability:

No intelligent communication can take place without a certain understanding of the recipient. [. . .]

Some systems monitor the student's activity very closely, adapting their actions to the students'

responses but never relinquishing control. In mixed{initiative dialogues, the control is shared by the

student and the system as they exchange questions and answers. [. . .] In guided{discovery learning

or coached activities, the student is in full control of the activity, and the only way the system can

direct the course of action is by modi�ying the environment. (pp16/21)

The decision was made to use guided{discovery learning in the Tootsie tutorial system, however

with JavaScript the adaptability is reduced to a very basic form. The authors of tutorial systems

must therefore responsibly decide what exercises they choose and in which way they present those

to the student. [Schulmeister, 1997] has interesting thoughts on the problems which arise in ac-

complishing adaptability in an intelligent tutoring system. He rightly notes that the functionality of

adaption must lead to further di�erentiation of the learner's parameters because adaptability wants

to be \natural", and not coarse or arti�cial. The increased granularity of the monitored variables

however leads to a combinatorial explosion of the diagnosis process, so �nally it is only a form of

microadaption that intelligent tutorial systems can currently use. [Schulmeister, 1997] unfortu-

nately notes that hermeneutical adaptability, where it is possible for the student to browse in a

broad information domain and work with it individually and selectively, is unthinkable for tutorial

systems (p201). In many cases only an unlimited information space can promote this level of adaptability.

4.2.4.1 Adaption Variables

As mentioned before Tootsie uses persistent client{state HTTP information, called Cookies, to store a

basic student's pro�le on which the adaption process is based. Whenever the student accesses the tutorial

system, the Cookie data will be read and updated on the client's side, i.e. the Cookie �le in the student's

home directory. In the current version Cookies have a life span of one year, which should be long enough

for a course that lasts one semester. The following variables are set by the system:

� tootsie cont

This Cookie is used by the tutorial system to store which layout was chosen for the table of contents

3

See page 17.

[Chapter 4] Implementation 69

by the student. Currently there are three settings: \extensive" (Large TOC) which displays all entries

of the table of contents, \basic" (Short TOC) which only shows those entries which are not yet

solved, and \annotated" (I suggest) which recommends exercises by writing them in bold{faced

or italic{faced font.

� tootsie dlvl

The student's current di�culty level, a numerical value, is stored in this Cookie. The value, ranging

from one to �ve, can be changed either by the student or the tutorial system. In the latter case the

system developer must add a JavaScript procedure called Adaption() to each template �le. The

variable is used to load exercises, whose di�culty rating is closest or equal to the current di�culty

level.

� tootsie hlvl

The numerical help level value is used whenever the student selects the help button of an exercise.

Based on the help level stored in this Cookie a help �le is displayed. If a help �le is not de�ned by

the developer, no help button will be shown in the exercise. If a help �le is de�ned for at least one

help level, a default text for the remaining levels will be used.

� tootsie info

The string variable stores for each marked exercise group the di�culty levels of that group that

were correctly solved. The information is encoded in alphanumerical form, so each letter represents

the status of the whole group. If an exercise is not marked the group value will not be changed.

� tootsie name

If a new user accesses the tutorial system for the �rst time he will be asked to enter a name, which

is not necessarily his real name. The information is stored in this Cookie and will be displayed

whenever the student returns to the start screen of the tutorial system.

� tootsie nexe

The string variable records how often a single exercise was tried by the student. The information

is alphanumerically encoded and saved in a single letter whose binary value will be increased up to

a maximum of 25 student accesses. The value will remain unchanged if an exercise is not marked.

� tootsie nexr

The numerical value counts how many exercises were tried by the student in the current session.

The information will be kept until the user clicks on the start button of the welcome screen. It will

remain unchanged if an exercise is not marked.

� tootsie prev

This \true{false" Cookie is used if an exercise is correctly solved by the student. If the system

developer enters a comment in the HTML form for de�ning link rules, the text will be displayed in

form of a feedback in the next exercise.

� tootsie rsoe

The string variable stores for each exercise how many times the exercise was solved by the student

until the alphanumerical value | each exercise is represented by a letter | exceeds the maximum

of 25 correct solutions. The value will remain unchanged if the current exercise is not marked.

� tootsie rsol

The numerical value counts how many exercises were solved by the student in the current session.

This information will be kept until the user clicks on the start button of the welcome screen. The

value remains unchanged if the current exercise is not marked.

� tootsie zahl

The numerical value counts how many times the welcome screen of the tutorial system was accessed

by the student.

System developers can add new Cookie variables, but they should keep the restrictions mentioned in

the Cookie spezi�cation by [Netscape Developer, 1997e] in mind. The template �les included in the

tutorial system, Tootsie, currently o�er two procedures to read and write Cookie values: GetCookie and

SetCookie.

70 Tootsie Development System [Section 4.2]

4.2.4.2 Adaption Procedure

According to the information which is stored in the Cookie variables the tutorial system can react before

the student needs to ask for help or becomes lost. For adapting the course
ow to the student, the

system developer must add a JavaScript function to the exercise template �les. The current version of

Tootsie does not have an adaption procedure, but its suggested position in the source code and its name

are represented by a deactivated Adaption() function call. With the help of the Cookie variables the

following questions could be answered:

� Has the student solved a introductory exercise?

� How many exercises have been correctly solved in the current session, and how many has the student

tried?

� Is the current di�culty level therefore too high? Or is the help level too low?

The following example shows another approach to adaptability. [Harrer, 1996] describes in his master's

thesis how the tutorial system Sypros assumes the student's understanding of a domain by rating the

di�erent subtasks of the internal representations of the student's problem solving steps. The moment at

which the tutorial system assists the student is controlled by the following parameters:

� Cognitive complexity of a information domain (based on the student's knowledge).

� Motivational disposition of students, which is either more success{ or failure{driven.

� Amount of time which has passed since the last assistance.

� Amount of time which has passed since the student had di�culties with the current goal.

� Type of last intervention.

� Di�culty level of the current goal.

In addition, the reactions of the tutorial system, Sypros, are based on \tutoring rules", a catalogue of

\if{then{rules" which must be de�ned by the system developer according to the knowledge domain and

didactic principles ([Harrer, 1996], pp85{95).

4.2.5 Flexibility

It is possible to combine the di�erent techniques which can be used for implementing a tutorial system in

the world{wide web, to gain the most bene�ts for interaction between students and system. Incorporating

Java applets and plug{ins in HTML documents, on which the tutorial system Tootsie is based, is simple,

and so it is possible to o�er simulations and interactive graphs to the students. I will however propose

other ideas, which describe how Tootsie | in conjunction with its current technique JavaScript | can

be modi�ed to introduce more complex teaching schemes.

4.2.5.1 Events

Tutorial systems with a sophisticated student{model, e.g. Sypros, are already in use. They constantly

monitor the student's activity and build up an internal representation of the student's knowledge of a

given problem. If the student does not follow the presumed path for solving an exercise, the internal

representation will respectively be modi�ed. For recording the student's activities, JavaScript code which

follows the student's operations must be added to the exercise template �les of Tootsie. I suggest using

event handlers, which are called whenever user events such as mouse clicks occur. These can be de�ned for

each entry item of an HTML form. For example, if the student changes the value of a text entry box, the

event onChange will be issued by the browser, on which a JavaScript function can react. The new events

[Chapter 4] Implementation 71

which will be introduced for HTML form objects in the new HTML 4.0 standard, will make possible

better understanding of the user's current intentions. There is, however, a major drawback: the size of

an exercise �le will inevitably increase, and so reading �les from the world{wide web will become slower.

This can be prevented by using Java applets combined with a database of exercise texts which is queried

when user actions occur (like the graph applet of PUSH which is mentioned in Section 3.6.2.1.). If this

method is adapted it would, however, be better to implement the tutorial system in the programming

language Java rather than JavaScript and Cookies.

4.2.5.2 Exercises

Adding new exercise types to the existing system requires experience in C programming. Nevertheless,

the following enumeration describes which steps must be done by a system developer:

1. Input form

An input form for the new exercise type must be de�ned by the system developer. In this respect,

the entry �elds \title", from which the �lenames will be derived, \exercise text", and \di�culty

level", which ranges from one to �ve, are important. In addition, a radio button is necessary for

setting a
ag which denotes whether or not an exercise is marked.

2. Template and resource �le

The structure of an exercise and the reactions of a tutorial system are de�ned in a template �le.

If the new template is similar to the existing ones I recommend using the same tokens which are

mentioned in the current resource �les. Otherwise a new exercise generator program which is called

by an input form must be written.

3. Generator program

The generator program replaces the tokens in the template �les for the data, which was entered by

the system developer in the input form. All exercises are currently created by di�erent generator

programs, which are however based on the same source code. For a new type of exercise a new

generator program with di�erent source code may be necessary.

4. Setting links

It is necessary to modify the overview tables and input forms which are introduced in Section 4.2.3.

In particular, the form for setting links and the link generator program must be adapted to the new

exercise type.

A more advanced teaching scheme can be introduced by event handlers and new types of exercises. For

complex systems, however, I recommend using a di�erent technique than JavaScript and Cookies. For an

intelligent tutoring system storing a permanent student model, providing a sophisticated tutor model,

and accessing a profound expert model is necessary. These requirements can only be achieved by using

external programs, like Java, knowledge bases, or CGI programs.

4.3 Tootsie Tutorial System

This chapter describes the learning environment of the tutorial system Tootsie. I will explain the general

structure of the user interface | its components and their dependencies are shown in �gure 4.2 | and

give reasons for implementing a cooperative work area. In general, the tutorial system should support the

various and individual learning methods of students, but in particular, system developers must concentrate

their design issues on the course domain as the user interface should primarily be \context{dependent

than student{dependent" (see [Schulmeister, 1997], p41).

72 Tootsie Tutorial System [Section 4.3]

Course

Registra-
tion

Coopera-
tive

Wizard Add-Ons Cookies Chat News

Wizard

Start

Exercise

Figure 4.2: After clicking on the Start button in the start screen of the tutorial system Tootsie students

are either sent to the registration screen (if they are �rst{time users) or the exercise wizard. From there

they can both join the cooperative work environment and the course area of the system. The dotted lines

represent easy transfers between the various components of the user interface, for example by clicking

on the links in the menu. The latter is only possible from \Course" to \Cooperative" but not vice versa.

4.3.1 User Interface

The tutorial system Tootsie runs in a world{wide web browser window, whose user interface restricts the

possibilities for interaction with the student. This is not a severe disadvantage, because most students

are already familiar with using a world{wide web browser, so a de facto standard of interaction and

navigation in the world{wide web is set. Tutorial system developers should therefore avoid di�erences

between this standard and the interface of the tutorial system itself (see [Espinoza & H

�

o

�

ok, 1996]).

Although the current version of the HTML is not very
exible

4

, designing a well{structured interface

is nevertheless very time{consuming, as the usability of the system and the student's learning progress

depend on it. Knowledge can be communicated and presented in a more or less intuitive way, so the

student's acceptance is primarily in
uenced by the ease{of{use and the attractiveness of the interface

(see [Wenger, 1987], p21). HTML 4.0, and cascading style sheets give the developer the ability to raise

that acceptance. Another idea for a hypertext user interface is suggested by [Hall et al., 1996]: they

demand the end of the tyranny of the button

5

(p157).

We encourage our authors to only use buttons when they really need to, but we clearly have a

serious re{education problem ahead of us. People who are used to HyperCard or the Web expect

links to be indicated by buttons. [. . .] There is a place for buttons in hypermedia systems [. . .], but

they do not have to be there in order for us to take advantage of the enormous potential of hypertext

technology. Drawing an analogy with the way we use books and libraries, we know intuitively when

reading a book that we can look up any word or concept we do not understand in a dictionary or

encyclopaedia, assuming they are available, or look up any term in the index for a cross{reference,

without the author having to make any indication in the text. (pp157/158)

The idea is that any word in a world{wide web page or hypertext system is a potential link to a de�nition

or explanation of that word. This supports Schulmeister's opinion that hypertext presents a complex

learning environment to the students, which allows them to behave in a natural way by browsing the

4

This will change with HTML 4.0 and its successor, the extensible markup language XML.

5

In general, \buttons" are highlighted objects which are used to navigate between hypertext documents. For example, in

HTML \buttons", i.e. links, are commonly marked by an underlined text.

[Chapter 4] Implementation 73

information space ([Schulmeister, 1997], p271).

4.3.1.1 General

After loading the tutorial system, four coloured sections of the main browser window, called frames, are

displayed (as shown in �gure E.2 on page 102). Their purposes are:

� Black

The menu frame contains links to the help pages, the cooperative work area, the questionnaire, and

the Cookie cutter. There is also a link for quitting the tutorial system by closing the browser window.

If the mouse pointer is moved over a link, a more comprehensive description will be displayed in

the status line of the browser window.

� Darkgrey

Help documents and explanations of glossary keywords, which were previously selected by the

student before, are displayed in \darkgrey" frame. The same frame is used for the add{ons \standard

distribution" and \pocket calculator". Both are integrated into the tutorial system to support the

student in solving exercises on probability theory and statistics.

� Lightgrey

The frame is reserved for the table of contents of a course, and is currently displayed as a text{based

and structured list. A di�erent technique is applied by [Espinoza, 1996]: he uses an interactive

graph applet written in Java, which provides an overview of neighbouring and related documents

based on the currently selected information unit. The student can simply navigate in the knowledge

domain by clicking on the objects of the graph.

� White

The \white" frame is reserved for the student's workspace environment, which consists of exercises,

welcome pages, and Cookie cutter information.

The use of frames is often part of controversial discussions on the design of web sites. An advantage is

that a frame is an independent section of the browser window, which means that other frames are not

in
uenced, for example by scrolling. A second argument is closely related to the �rst one: all the frames

are constantly visible and, in contrast to windows, they cannot overlap. [Schulmeister, 1997] quotes

a 1989 paper by Jonassen which suggests limiting the number of windows that may be opened by the

user at any time and expressly forbids overlapping windows in a display (p391). [Schulmeister, 1997]

however disagrees: he argues that multiple windows do not detract from the usability of tutorial systems

as users get more and more familiar with window systems (p391). In my opinion Schulmeister's arguments

are reasonable, but only if the di�erent windows are not constantly needed. This is the case however with

the table of contents, the exercise pages and the help texts of the tutorial system Tootsie. A peculiarity of

frames is that with Netscape's Navigator 3.x a bookmark can only be set to the start page of a web site,

but not to any consecutive documents which are rendered inside a frame. In general, this is a disadvantage,

but not in the tutorial system Tootsie, which needs a suitable starting point to reset the system for each

session.

4.3.1.2 Menu Items

The menu of the tutorial system is shown in the \black" frame of the browser window. Its contents are:

� Help, symbol: ?

If students require assistance for the di�erent screens of the tutorial system, they can click on the

help link in the menu frame. Depending on the displayed document a context{sensitive help page

with frequently asked questions is loaded. However, questions regarding speci�c exercises should

only be answered in the \darkgrey" frame.

74 Tootsie Tutorial System [Section 4.3]

� Chat, symbol: :)

The chat tool, which is part of the cooperative work area, is explained in Section 4.3.2.1.

� News, symbol: !

The possibilities of the news group are discussed in Section 4.3.2.2.

� Email, symbol: @

After selecting the email link a list of people who are involved in the current course is displayed, so

a student can contact the system developer, tutors, or lecturers.

� Cookie, symbol: *

The Cookie cutter is described in Section 4.3.1.3.

� Wizard, symbol: A

Information on the exercise wizard can be found in Section 4.3.1.4.

� Feedback, symbol: F

Students should be able to express their opinion on computer{based learning, so after clicking on

the feedback link a questionnaire for comments and bug reports is shown.

� Quit, symbol: X

This closes the browser window of the tutorial system.

The menu should be restricted to the most important or frequently used items, and if this is not possible,

or submenus are needed, a new menu structure is recommended (for example, with the help of select

boxes).

4.3.1.3 Cookie Cutter

Cookies are often regarded suspiciously by users, because they are stored in the user's directory and their

data is often encoded. Therefore, it is generally di�cult to have the user's permission to set a Cookie

value. This is the reason why I introduced the Cookie cutter in the tutorial system to allow the students to

examine and modify the stored Cookie values. A positive side{e�ect is that students can also experiment

with the tutorial system by trying \what{if"{cases, for example: \what happens if an exercise is marked

as solved". More details on the used Cookie variables can be found in Section 4.2.4.1.

� Overview of exercises

The overview table informs students as to whether or not an exercise has been solved. The columns

represent the various di�culty levels, so if a student clicks on a check box in the table, the exercise

rated with that di�culty level will be marked as solved. The Cookie value is modi�ed by clicking

on Change.

� Cookies for adaption

This page shows the values of the Cookie variables which store the di�culty level, the help level,

the number of exercises tried, and the number of exercises correctly solved. By clicking on the arrow

buttons the variables are respectively decreased or increased, and the current value can be displayed

by selecting the middle button.

� Tootsie statistics

The two tables tell students how many times they have tried an exercise and how often it was

correctly solved. These values cannot be changed by the users.

The Cookie cutter can also be accessed by the system developer for test purposes: by modifying his

Cookie values errors and missing links can be found in the system.

[Chapter 4] Implementation 75

4.3.1.4 Exercise Wizard

The exercise wizard is supposed to guide students through the course. It suggests exercises and

assists students in planning their curriculum. If users are \lost{in{hyperspace", it will help them

to choose a new topic or exercise. Users must normally select the exercise wizard entry in the menu

frame, but the developer can also set a link to the wizard in an exercise or terminal page of a course section.

As described in Section 3.2.4 [Weber & Specht, 1997] use two similar adaption techniques, which

are called \individual curriculum sequencing" and \link annotation". During their studies however they

discovered that the individual guidance only helps learners at the beginning of a course in following an

optimal path through the information space. In later sessions the students understood the hierarchical

structure of a course, and so most of them did not require further assistance in order to �nd the best

learning path. The exercise wizard will consequently have to face the same problem, but still individual

guidance prevents beginners and less skilled students becoming frustrated in the starting phase (see

[Weber & Specht, 1997], pp10/11). The following information is o�ered by the exercise wizard.

� Di�culty

It shows the current student's di�culty level. The remaining information, which is presented by the

exercise wizard, is solely based on this di�culty level.

� Exercises not solved

The titles of exercises, which are not yet correctly solved by the student, are displayed.

� Fuzzy links

This section suggests exercises which were once solved, but repeatedly incorrectly answered in later

sessions. The wizard assumes that the student has problems with a particular course subject, so it

recommends repeating the exercise. In a future version of Tootsie links to additional pages could

be included which would give more information on an exercise or try a di�erent approach to the

problem.

� Recommendation

The tutorial system suggests whether a student should increase or decrease the di�culty and help

level. This advice is based on the number of correctly solved exercises, which is compared with the

number of all exercises that have been done during the current session. More speci�c rules can be

implemented by the system developer.

The wizard only processes exercises which are marked and listed in the table of contents of the

tutorial system. \Hidden" exercises are not supported, because they are primarily used as introductory

documents of a chapter instead of terminal pages or work sheets. The system developer should however

modify the source code of the exercise wizard in order to assist the student with all the information that

�ts best to the course. After reading the recommendations the student can choose the next chapter or

topic from the table of contents.

4.3.2 Cooperative Work Area

Cooperative learning is especially useful for promoting the acquisition of knowledge because human

mental functions and achievments are rooted in social relationships (according to the Russian psycholo-

gist L.S. Vygotsky, see [Schaffner et al., 1996], p4). This is, however, not restricted to face{to{face

meetings: with computers and computer networks world{wide cooperation is made possible by email

communication and computer conference systems. A newsgroup discussion, for example, is often similar

to team work: in general help behaviour is increased, hierarchical structures like student{teacher

relationships are less important, and the communicating partners have both opportunities to ask

and answer questions. Therefore, goals are faster and better achieved than in computer{assisted, but

competitive and individualistic learning environments (see [Schulmeister, 1997], pp283/284).

76 Tootsie Tutorial System [Section 4.3]

The students' individual learning characteristics greatly in
uence the success of cooperation. For

skilled students the learning method is less important, but less skilled learners mostly bene�t from the

cooperative method. The advantage is that problems can be discussed with other students, thus errors

are quickly detected and more suitable algorithms for solving a particular problem are remembered (see

[Schulmeister, 1997], p284). However, I must note that most studies which compared cooperative and

non{cooperative learning methods have not found any signi�cant di�erences (see [Schulmeister, 1997],

p284). I was nevertheless convinced of the bene�ts which cooperative learning could o�er, so I introduced

the following two tools in the cooperative work area. In particular, benchmark lessons, which are

introduced in Section 4.3.2.2, o�er a new form of discussion which increases the student's knowledge

better than newsgroups and addresses more experienced learners.

4.3.2.1 Chat

In general, a \chat" is a program or a world{wide web site where di�erent users, who often do not

know each other, meet in order to discuss previously agreed topics. The \chatters" enter sentences

with the help of their keyboards, submit the text to the chat group and read the answers on the

computer screen, which is frequently updated, so all participants are able to follow the discussion.

According to [Sackl, 1997] this form of communication is called \synchronous", because messages

immediately reach the communicating partners and can be answered at once if the partners are present

at the same time (p47). Newsgroups, which are described in the following Section 4.3.2.2, represent

an \asynchronous" communication tool and need the ability to store messages which are sent by

the various partners

6

on disk, because members of a newsgroup rarely take part in a discussion at

the same time. Therefore, they must have access to all the messages which have been issued after

their last visit. A message can only be read by the participants of a discussion after it has been

posted. However, compared to the few seconds in synchronous communication, the delay between post-

ing a message, and the message becoming available to the other participating members is not insigni�cant.

Online asynchronous discussion lacks the real{time (synchronous) feedback of a live discussion.

However, it does allow students to compose their thoughts carefully, develop written commu-

nication skills, work away from school and have time to use references when considering their

responses. At the same time, we acknowledge that rewarding discussions must be active and timely

([Schaffner et al., 1996], p16).

In the world{wide web chats belong to the most frequently visited sites, so their use is already quite

common and accepted. By adding a basic chat program I intend to give the students the possibility of

talking with each other about problems, solutions, and exercises. At least once a day a human tutor or

lecturer should be present, so he can also be contacted with the help of the chat tool. In the internet

the communication is often not moderated which means that people do not know with whom they are

talking, so this may be an advantage for students who feel insecure when talking to others face{to{face,

for example in a lecture etc. In a chat these students can participate more freely, and with the Tootsie

chat program they can also remain anonymous. The chat tool is selected by clicking on the link in the

menu frame of the tutorial system. Two new frames are displayed: the lower one contains the discussion

text while in the upper frame messages can be entered. At the beginning students are also asked for

their names

7

, which are then �xed for the current chat session. Messages are immediately sent to the

discussion, when the submit button is clicked. From that moment on the text frame is updated every ten

seconds, and students are able to participate in the discussion at any time. Their contributions are shown

with their names, the date, and the time of the posted message. In general, it is possible to introduce

di�erent chats for various topics or groups of learners in order to o�er an environment to the students

which is better based on their requirements.

6

This process is also called \posted".

7

Called \avatar".

[Chapter 4] Implementation 77

4.3.2.2 News

The implementation of the news tool was inspired by the benchmark lessons which are mentioned

in the paper by [Schaffner et al., 1996]. In general, the current tool can be used to simulate

newsgroups commonly known from the usenet, however the bene�ts of benchmark lessons persuaded me

to introduce the same ideas for the tutorial system, Tootsie. Benchmark lessons are based on \facets"

which [Schaffner et al., 1996] use as the building blocks of their tutorial system, DIANA. In general,

facets are described as pieces of knowledge that compose a person's understanding. They represent ideas

which students have obtained from a certain domain, and it is the task of a human or computer{based

tutor to identify pre{existing and context speci�c facets in order to build instruction upon them. A key

factor of facets is that they can be recognized whenever the student uses them, for example in writing

or speaking. Therefore, a tutorial system can collect the various facets, and upon that decide which

advice must be given to enhance and extend the student's skills and expertise. The development of

a facet database and the uses of facets in learning are thoroughly explained in [Schaffner et al., 1996].

A benchmark lesson is a full{class discussion moderated by an instructor

8

and designed to provoke

group discussion of the facets held by the di�erent students (p10). [Schaffner et al., 1996] believe

that benchmark lessons in conjunction with lectures and case{studies stimulate thought and promote

students' social interaction as learners must act together and occasionally change their attitudes

and ideas (p10). In a benchmark lesson a problem is presented to the students by the moderator or

lecturer, and from that moment on the participants of the discussion are asked to solve the task.

[Schaffner et al., 1996] recommend structuring the postings of a benchmark lesson, so new facets

can be created, challenged and re
ected by the students. A sample benchmark lesson is described in

[Schaffner et al., 1996, Chapter 3.4], which I summarise here:

Our solution balancing the merits of asynchronous and synchronous discussion imposes a fairly rigid

structure and schedule on the discussion. Our virtual benchmark lesson has four primary parts: (1)

initial response and justi�cation, (2) critique, (3) discussion and (4) re
ection [. . .]. Social loa�ng

may occur when individuals do not feel that their participation is necessary for the group to function

fully. Rogelberg et al. (1992) introduced the \step{ladder technique"; a group discussion mechanism

that requires every group member to submit their ideas before any thorough discussion or conclusion

[. . .]. Once all initial responses and justi�cations have been posted, students read each other's posts

and are required to critique at least one other post by either arguing in favor or against it while

providing support and examples for their position [. . .]. We wrap up the discussion with re
ection.

Again, temporarily blinded to other responses, each student makes a �nal contribution to their

group's collection of posts by contributing a short summary of what was learned in the benchmark

lesson.

The advantages and disadvantages of benchmark lessons are discussed by the authors:

On{line collaboration gives each student the opportunity to voice their opinions and participate

[. . .]. In the virtual environment everyone has a chance and the environment feels less confrontational

[. . .]. High{ability students may bene�t from explaining ideas to low{ability students, gaining

the intellectual bene�t from teaching [. . .]. Low{ability students may bene�t from having peers

explain concepts in terms closer to their own understanding [. . .]. Virtual benchmarks are valuable

to the instructor. Because discussion proceeds openly without judgment, teachers are able to

get a deeper idea of what is and is not understood by the class as a whole [. . .]. With every

student participating in many ways and at many levels, it is very di�cult for an instructor to give

each response the careful and thorough attention it deserves [. . .]. Another problem of the virtual

benchmark is that there is no way to ensure that each student reads all the other postings in the group.

8

These intentions are in contrast to the more open usenet newsgroups.

78 Tootsie Tutorial System [Section 4.3]

As mentioned above the benchmark lessons encompass many bene�ts which asynchronous communication

o�ers in the work with discussion boards. The strict structure of benchmark lessons is especially impor-

tant if bigger groups of students are participating. [Schaffner et al., 1996] recommend restricting the

number of users to 8 or 10 by splitting up a discussion board into smaller ones. The experiments carried

out by the authors showed how well benchmark lessons were received by the students. \Researches have

shown that discussion methods keep students active and involved with their learning. Ideally benchmark

lessons follow diagnosis and are chosen based on the prevalence and severity of novice facets in a

classroom; however, benchmark lessons (in{class or on{line) are likely to be bene�cial to any audience,

even when divorced from diagnosis (p32)." In my opinion it may be precarious to abolish diagnosis that

tries to �nd out the students' novice facets on which the design of benchmark lessons should be based.

[Schaffner et al., 1996] earlier say in their paper that e�ective instruction should identify students'

pre{existing and context speci�c pieces of knowledge, build upon them and weave them into a coherent

whole (p5). Therefore a developer of a tutorial system should include a method which makes diagnosing

facets at the very beginning of the design process possible. Nevertheless, I emphasize that some of the

results, which are mentioned in [Schaffner et al., 1996], are not universally applicable: the tested

user groups may not be representative, new teaching methods are often positivly considered at the

beginning but this e�ect may wear o�, and the results may be in
uenced by the Hawthorne e�ect.

4.3.3 System Evaluation

Restrictions that arise from using JavaScript and Cookies, are explained in Section 3.5.4, so in this

section I present the results of a beta{test, which was done with a small tutorial system at Technische

Universit�at M�unchen in April 1997. The �rst trial version was not aimed at testing the educational

abilities, but examining the technical availability and usability of the system. I announced the test in one

of the computer science newsgroups at Technische Universit�at M�unchen, and eight students anonymously

participated in a course consisting of four basic questions on Bayesian laws which were taken from the

DIANA tutorial by [Schaffner et al., 1996]. The results are not scienti�cally relevant, because the

user group was very small and does not represent the student body of the university. In addition, the small

number of exercises and the missing di�culty levels prevent an educational analysis. The test o�ered one

exercise in form of a benchmark lesson, but the students did not participate. For the implementation I

used the German version of the tutorial system Tootsie, which did not have an entry questionnaire for

assigning the student to a user group that is distinguished by the di�culty and help levels. The system

was rated by answering an online questionnaire which could be �lled out by the students at any time.

The Cookie values of each student could optionally be included, so I was able to see how often and

how successfully a student had worked on the course. The results were promising, but some previously

unknown problems arose. These are explained and solutions are suggested:

� \HTML and JavaScript code was displayed in the document window."

This problem had not shown up in my previous tests, and I do not exactly know what happened.

I think the reason for this problem is based on the method by which a framed document is loaded

by the world{wide web browser: occasionally not just one frame must be updated, but two or more

at the same time. Presumably this is not properly done by the browser, because selecting reload

frame in the menu correctly works for each individual frame. I recommend restricting the use of

frames to situations where not more than one frame must be updated.

� \It was di�cult to return to the start screen of the system."

This is intended, because the start screen resets all the Cookie values, and therefore it should only

be accessed at the beginning of a session. The problem can nevertheless be �xed by putting a link

to the start screen in the table of contents.

� \The dialog box which asks whether or not the student would like repeat the exercise, was displayed

many times. I recommend using a neutral screen instead."

I must emphasize that the course only consisted of four exercises, so this dialog box frequently

appeared. In a larger system this will rarely be the case. I can nevertheless o�er a di�erent solution:

the developer must introduce a new Cookie variable that records, for each exercise, whether or not

the student has answered the dialog box with \no". Whenever a link to a next page is returned by

[Chapter 4] Implementation 79

a JavaScript function, a new procedure must be called which checks the Cookie variable, and in

case of a \no" entry the exercise wizard is loaded.

� \The used font is too small."

A problem of world{wide web browsers is that their settings or ways of displaying a web page are

very di�erent. Before cascading style sheets are wide{spread, world{wide web users must be asked

to select a new font in their preferences.

� \The start screen is not well organized, and buttons or links are not explained."

The idea of separating the start screen from the other pages | currently the table of contents, the

menu, and the help frame are immediately displayed after the system was loaded | will be adopted

in future releases. For explanations of buttons and links, the status line of the browser can be used,

so the system developer must modify the C source and template �les of the Tootsie Development

System.

� \Tootsie did not work with Microsoft's Internet Explorer 3.02."

For Microsoft's Internet Explorer 3.x the use of frames is not recommended, because documents

cannot be loaded into a frame di�erent from the one where the update request was issued. The sys-

tem developer must therefore consider whether or not it is possible to work with a single document

window.

The remaining questions of the questionnaire were answered by the students in the marking scheme of

the university: the lower the average mark is, the better the topic was rated. The results are presented

in table 4.1.

Table 4.1: Results of the Tootsie Tutorial System Evaluation in April 1997

Student

Topic A B C D E F G H Avg

Fun in Working with Tootsie 2 3 3 2 2 3 4 n/a 2.7

Own Educational Progress 5 5 2 2 n/a 5 5 n/a 4.0

Usability of Tootsie 2 3 2 2 1 4 4 n/a 2.6

Bene�t of Group Work Area n/a 2 2 3 5 n/a n/a 2 2.8

Chapter5

Conclusion and Outlook

This thesis introduced the fundamentals of tutorial systems by discussing the psychological background,

the various types of educational software, and the prototypal implementation of a sample system.

Its primary goal was the comparison and the presentation of techniques which combine tutorial

systems and the world{wide web to a learning environment that is both universally accessible and

individually adaptable. Based on the previous chapters I can conclude that the future prospects of

distance learning are good: plug{ins and Java applets o�er real interaction between student and system,

external programs are integrated with the help of CGI (or the CL{HTTP server respectively), and

HTML 4.0 and JavaScript provide new ways of structuring documents and monitoring the students'

activities in formerly static HTML forms. The advantages of a world{wide web based course are

the availability and the independence of the system. Students can access tutorial systems without

general restrictions of time or location, so a learning environment is created which is focused on the

learners' needs, and not on organisational preliminaries. In this respect the underlying world{wide

web technology is less important than the pedagogical concepts. Most of the resources reserved

for the system design should therefore be invested in establishing an exploratory and motivational

environment which challenges the users and supports them according to the integrated didactic principles.

This thesis was also aimed to provide an overview of the current research of tutorial systems. The combi-

nation of the subjects Psychology and Computer Science is manifested by the proposed implementation

for knowledge representation, feedback, adaption, and the structural organisation of tutorial system com-

ponents. Future software will strengthen these ties: as research of arti�cial intelligence and computational

linguistics

1

proceeds previous modelling problems, like true understanding of the students' actions, may

be solved. Practical solutions for the \use of the button", the organisation of course documents, adaption,

and a cooperative work environment can be found in Sections 4.2 and 4.3. Some of these proposals have

already successfully been applied to various tutorial systems, so their integration in existing or new

educational programs should be considered. In the future distance learning will play an essential role

in adult training as the various research projects, like Lecture 2000

2

or Deutsche Telekom's T{Mart

3

,

show. However, tutorial systems cannot fully replace human communication: �rstly, social interaction

is often essential for learners (see Section 4.3.2), and secondly, current tutor and student models are

still inadequate to react speci�cally on the individual problems which hinder successful learning. In its

current form distance learning is therefore a supplement to traditional training rather than an alternative.

Ideas which use the di�erent world{wide web technologies to implement a tutorial system are presented in

Section 3.7. However, with their help it is hardly possible to compensate de�ciencies of the user interface

of the underlying browser application. For a world{wide web based tutorial system two features, which

current browsers do not provide, would be extremely useful:

� Magic marker

If students read documents which are printed on paper they often mark passages, which are impor-

tant for them, with a magic marker and write annotations beside the text segments. This technique

could easily be implemented in world{wide web browsers: text is highlighted by the users and an-

notated with the help of an external text editor. Whenever the users return to the same page,

1

For example, see http://www.cis.uni{muenchen.de/.

2

see http://wwwschlichter.informatik.tu{muenchen.de/proj/lecture/.

3

see http://www.t{mart.com/.

80

[Chapter 5] Conclusion and Outlook 81

which is uniquely characterised by its URL, the text segments are automatically highlighted and

the entered information is displayed if the students click on the marked passages. The annotations

and the locations of highlighted text could be stored on the users' hard disk.

� Storing of contents

Currently, if world{wide web users save HTML documents on their hard disks, the embedded

objects, like images, will unfortunately not be downloaded. The possibility of storing the contents

of a web page automatically could be implemented by transfering the objects to a local directory

and by replacing the links of the remote objects, which are inside the HTML document, with links

to the new �le names.

The prototypal implementation of Tootsie provided an insight into the possibilites and restrictions of

tutorial systems on the world{wide web and JavaScript in particular. I presented arguments for and

against JavaScript, introduced a development system for creating exercises as easily as possible, and

examined various enhancements, like the exercise wizard and the cooperative work environment, of the

traditional drill{and{practice approach of the tutorial system. An evaluation, which was held in April

1997, showed how students accepted the design of my computer{based training program. The following

enumeration discusses limitations of my solution and presents implementational alternatives:

� For creating exercises and HTML documents the development system was introduced to prevent

super�cial errors being made by system developers, which for example frequently occur when code

sections are manually copied. The exercise templates however, which de�ne a general layout pattern

for an exercise, restrict the
exibility of the �nal system by excluding more individual course

documents. This problem can either be solved with the integration of new templates or with manual

modi�cations of the resulting HTML �les.

� The cooperative work environment allows students to interact with each other, for example by

discussing a benchmark lesson. The current tools are not fully operational: the programs do not

support locking of �les, so whenever two processes simultaneously access the same �le an error

message will be returned. The relevant components can easily be replaced, so for example a \chat"

program which is based on the programming language Java could be used instead.

� The system code is solely implemented in JavaScript which allows the quick integration of individual

system functions. This suits the indended use of the system as a drill{and{practice program with

basic extensions for student adaption. For more advanced training software however, a JavaScript

implementation would be better replaced by Java or (partly!) CGI programs. These allow more

extensive student monitoring, bigger systems, and the \separation of concerns".

� The user interface of a tutorial system is supposed to relieve the work{load of the students' working

memory, so a well structured and intuitive design is recommended. The current implementation is

only used for test purposes, and should therefore be changed.

This thesis aimed to provide an overview of technologies which are available for a broad user group.

Therefore, it does not describe methods which are rarely used (like the virtual reality modelling language

VRML), still in the making (for example, the extensible markup language XML), or platform{speci�c

(like Microsoft's ActiveX). These techniques should nevertheless be considered if a tutorial system is

designed as they often provide possibilities which other technologies do not o�er.

82

Appendix

AppendixA

Resource Variables

The following resource variables are needed to localize the Tootsie development system. For example,

they specify in which directories �les are stored, which tokens introduce important code sections, and

which error messages are returned to the user. The letters C, G, L, M, S, T, and V, which are described in

Appendix B.1.1, represent the various resource �les .rsc, in which the variables are de�ned. These �les

are used by the CGI programs of the Tootsie development system.

Table A.1: Resource Variables of the Tootsie Development System.

Resource Variable Usage Comments

APPLET DIRECTORY -G-MSTV The world{wide web directory, i.e. URL path, which

contains all the Java applets for the tutorial system.

BASE ---MSTV Token in the template �le that is replaced with the

contents of BASE HREF.

BASE HREF CGLMSTV The world{wide web root directory, i.e. URL path,

where all the exercises of the tutorial system are

stored.

CONTENT ENDMARKER C-LMSTV String or character which ends the overview list of

exercise sections.

CONTENT FILE C-LMSTV Development system �le in which information on the

exercise sections is stored.

CONTENT MARKER C-LMSTV String which starts the overview list of exercise sec-

tions in the �le CONTENT FILE.

COOKIE ---MS-V A token which is replaced with the position of the

Cookie character in the Cookie string, that is used

for the current exercise.

DEFAULT HELP TEXT ---MS-V The default help text which is used for a help �le if

no other text is de�ned by the author.

DEFAULT HELP TITLE ---MS-V Default title of a help �le.

ENTRY SYNTAX ERROR C-L---- Error message which is displayed on screen if wrong

data has been entered into the current form.

EXERCISE TYPE ---MSTV A two{letter code which denotes the type of an ex-

ercise. It is used by various programs and �les of the

development system.

EXERCISE TYPE TEXT ---MSTV A description for the two{letter code EXERCISE TYPE

which is required in the overview table of exercises.

EXERCISE WIZARD FILE C------ The location and name of the exercise wizard �le.

FILE END C-LMSTV Text which is returned to the author if a program of

the development system has successfully processed

the form input.

. . .

85

86

. . .

Resource Variable Usage Comments

GLOBAL ENDMARKER --L---- String or character that ends the section of an exer-

cise �le, in which the global variables are de�ned.

GLOBAL MARKER --L---- String or character that starts the section of an ex-

ercise �le, in which the global variables are de�ned.

GLOSSAR DIRECTORY -G----- The directory in which all the glossary de�nitions are

stored.

GLOSSAR END -G----- Text which is returned to the author if a glossary �le

has been successfully written on disk.

GLOSSAR INDEX ENDMARKER ---MSTV String or character which ends the overview list of

glossary de�nitions in the �le GLOSSAR INDEX FILE.

GLOSSAR INDEX FILE -G-MSTV File name, including path, in which the overview list

of glossary de�nitions is stored.

GLOSSAR INDEX MARKER ---MSTV String or character which marks the start of the

overview list of glossary de�nitions.

GLOSSAR SEPARATOR ---MSTV Glossary keywords which are used in an exercise text

must be speci�cally entered by the author, so links to

the glossary �les are automatically set by the devel-

opment system. Consequently, GLOSSAR SEPARATOR

de�nes the character which separates the di�erent

keywords.

GLOSSAR SYNTAX ERROR -G----- Error message which is displayed if a syntax error

has been found in a glossary �le.

GLOSSAR TEMPLATE -G----- File name, including path, of the glossary template

�le.

HELP ---MS-V Token which is replaced by the development system

with the help �le path for the current exercise.

HELP DECR ---MS-V Token which is replaced with the �lename of a help

�le that has a lower help level than the current one.

HELP FILENAME ---MS-V This resource variable is currently not used. In fu-

ture releases it will specify the �lename of a help �le,

which is by default assigned to a help level whenever

a help text is not entered by the system developer for

this particular level. To activate the resource variable

the �le exfunc.c must be edited.

HELP INCR ---MS-V Token which is replaced with the �lename of a help

�le that has a higher help level than the current one.

HELP SYNTAX ERROR ---MS-V Error message which is displayed whenever the input

of the help entry box is incorrect.

HELP TEMPLATE ---MS-V Path and �lename of the template �le for help pages.

HELP TEXT ---MS-V Token which is replaced with the help text by the

development system.

HELP TITLE ---MS-V Token which denotes the position of the title string

in a help �le.

HINT ENDMARKER --L---- String or character that ends the section which con-

tains the feedback text. This text is displayed to the

user whenever the previous exercise has been suc-

cessfully solved.

HINT MARKER --L---- String or character that starts the section which con-

tains the feedback text.

. . .

[Appendix A] Resource Variables 87

. . .

Resource Variable Usage Comments

IMAGE DIRECTORY -G-MSTV The world{wide web directory, i.e. URL path, that

contains all the images which are used by the tutorial

system.

INDEX FILE --L---- The location and �lename of the overview list, in

which all the relevent information on linked tutorial

systems exercises is stored.

INDEX ENDMARKER -GLMSTV Generally it de�nes the end delimiter for the

overview list of created exercises. For the link pro-

gram, however, it symbolises the end of the section,

which contains the link information.

INDEX MARKER -GLMSTV Generally it de�nes the start delimiter for the

overview list of created exercises. For the link pro-

gram, however, it symbolises the start of the section,

which contains the link information.

INFO ENDMARKER --L---- It marks the end of the code section in an exercise

�le where links to succeeding exercises are stored.

INFO MARKER --L---- It marks the start of the code section in an exercise

�le where links to succeeding exercises are stored.

LINKS DIRECTORY --LMSTV It de�nes the root directory in which the created ex-

ercises will be stored (the path must be similar to

the world{wide web directory BASE HREF).

LINKS INDEX ENDMARKER --L---- It marks the end of the overview table for created

exercises.

LINKS INDEX FIlE --LMSTV Location and �lename, in which the overview table

for created exercises is stored.

LINKS INDEX MARKER --L---- It marks the start of the overview table for created

exercises.

LINKS TEMPLATE ---MSTV Location and �lename of the exercise template.

LOGIC END --L---- This marker is placed into the exercise template but

required by the linking program. It de�nes the end of

code section, which is executed when the user selects

Continue....

LOGIC START --L---- It de�nes the starting point of the code section, which

is executed when the user selects Continue....

MULTIPLE CHOICE --L---- The user interface of the development system does

not use the common abbreviation mc for multiple{

choice questions, but shows a more intuitive expres-

sion instead. Therefore, for the link program the

string MULTIPLE CHOICE speci�es which term stands

for mc.

NO CONTENT ENTRY --L---- Error message which will be displayed if the list of

exercise sections is not found or if an erroneous entry

is read.

NO CONTENT FILE C-LMSTV Error message which will be displayed if the �le with

list of exercise sections is not found.

NO CONTENT MARKER C------ Error message which will be displayed if the start

delimiter for the list of exercise sections is not found.

NO ENDMARKER -G-MSTV Error message which will be displayed if the end de-

limiter of a list is not found.

. . .

88

. . .

Resource Variable Usage Comments

NO EXERCISE --LMSTV Error message which will be displayed if the exercise

�le is not written on disk.

NO EXERCISE WIZARD FILE C------ Error message which will be displayed if the �le

EXERCISE WIZARD FILE cannot be opened by the

system.

NO GLOSSAR -G----- Error message which will be displayed if the glossary

�le is not written on disk.

NO GLOSSAR INDEX ---MSTV Error message which will be displayed if the �le con-

taining the overview list of glossary keywords is not

found.

NO GLOSSAR LINE ---MSTV Error message which will be displayed if an error in

the �le with the overview list of glossary keywords is

found.

NO GLOSSAR MARKER ---MSTV Error message which will be displayed if a delim-

iter for the overview list of glossary keywords is not

found.

NO HELP FILE ---MS-V Error message which will be displayed if a help �le

is not written on disk.

NO HELP LEVEL ---MS-V Error message which will be displayed if the author

does not specify a help level in the entry �eld for help

texts.

NO HELP TEMPLATE ---MS-V Error message which will be displayed if the template

�le for help pages is not found or cannot be opened.

NO INDEX -GLMSTV General error message which will be displayed if an

overview �le cannot be found.

NO LINKS INDEX --L---- Error message which will be displayed if the �le con-

taining the overview list of the created exercises is

not found.

NO MARKER -G-MSTV Error message which will be displayed if a delimiter

of a overview list is not found.

NO TEMPLATE -G-MSTV Error message which will be displayed if the �le con-

taining the exercise template is not found.

NO TOOTSIE CONTENT C------ Error message which will be displayed if the content

�le cannot be written on disk.

SINGLE CHOICE --L---- Similar to MULTIPLE CHOICE, but used for single{

choice questions instead.

SOLUTION ---MS-V This marker, which is used in an exercise template,

de�nes the start of the code section where the solu-

tions to the current questions are stored.

SUBTEXT ---MS-V This marker, which is used in an exercise template,

de�nes the start of the code section which is respon-

sible to display the exercise questions.

SUBTEXT ENDING ---MS-V Source code which must follow after the code section

which is responsible to display the exercise questions.

SUBTEXT HEADER ---MS-V Source code which must precede the code section

where the exercise questions are written.

SUBTEXT NUMBER ---MS-V Code portion which displays a numberic counter for

questions.

SUBTEXT SOLUTION ---MS-V Code portion which encapsulates the form element

of a question, which can be selected by the student.

. . .

[Appendix A] Resource Variables 89

. . .

Resource Variable Usage Comments

SUBTEXT SOLUTION TYPE ---MS-V Code portion which displays the form element, which

can be selected by the student.

SUBTEXT TEXT ---MS-V Code portion which encapsulates the text that is

asked in a question.

TEXT -G-MSTV Token which is replaced with the introductory text

of an exercise or glossary entry by the development

system.

TITLE SEPARATOR ---MSTV Like GLOSSAR SEPARATOR it speci�es a character

which separates each element of the title string. The

last part is used to generate the �lename of an ex-

ercise, while the others are needed to create suitable

subdirectories.

TITLE -G-MSTV Token which is replaced with the title of an exercise

or glossary entry.

TOOTSIE CONTENT C------ Filename, including path, of the table of contents of

the tutorial system.

TOOTSIE CONTENT ENDMARKER C------ String or character which ends the code section that

de�nes the structure of the table of contents.

TOOTSIE CONTENT MARKER C------ String or character which starts the code section that

de�nes the structure of the table of contents.

TOOTSIE HOME CGLMSTV Home directory of the Tootsie development and tu-

torial system.

TOOTSIE TEXT ENDMARKER C------ String or character which ends the code section that

is responsible for displaying the table of contents.

TOOTSIE TEXT MARKER C------ String or character which starts the code section that

is responsible for displaying the table of contents.

VARIOUS ANSWERS --L---- Similar to MULTIPLE CHOICE, but used for various{

answer questions instead.

WORD -G----- Token which is replaced with the glossary keyword.

.

AppendixB

Tutorial System Source Files

Tootsie is a suite of C and HTML �les. The program �les, which are required to create exercises, must

be compiled with an ANSI C compiler, before their executables can be copied to a directory of the

world{wide web server which is reserved for CGI programs. The HTML �les either de�ne the user

interface of the development system or the work environment of the tutorial system.

B.1 Tootsie Development System

B.1.1 Common Gateway Interface Source Files

The abbreviation RF stands for resource file, so each letter which is used in the RF �eld represents a

�le that de�nes resource variables of the Tootsie development system. These variables are described in

Appendix A. If the RF column contains one or more letters, the speci�ed resource �les will be read by

the executables created from the compiled program code.

Table B.1: CGI Source Files of the Tootsie Development System.

Source File RF Comments

chat.c The chat program is part of the cooperative work tools. It uses two text

�les, which are de�ned in the header of the source code, to generate the

output of the chat. Whenever a participant says something, i.e. output

must be written, the changes are �rst made in a backup �le, which will

replace the standard output �le then.

content.c C This program �le is responsible to write the table of contents for a tuto-

rial system as it is speci�ed by the author. Localized data is read from

the resource �le tdevco.rsc (C).

exfunc.c It contains the subroutines which are called by exmain.c whenever an

exercise �le is generated.

exfunc.h It de�nes the object structures and procedure signatures that are re-

quired by exmain.c.

exmain.c M

S

T

V

The main program, which generates exercise �les, calls the subroutines of

exfunc.c in order to parse the developer's entries in the exercise forms.

It also de�nes the names of the resource variables and reserves memory

space for them. Localized data is read from the resource �les tdevmu.rsc

(M), tdevsi.rsc (S), tdevti.rsc (T) and tdevva.rsc (V).

exmain.h The header �le of exmain.c contains preprocessor data and provides

access to the internal representations of the resource variables.

. . .

90

[Appendix B] Tutorial System Source Files 91

. . .

Source File RF Comments

glossar.c G The program is responsible to write a glossary �le according to the au-

thor's input in the glossary de�nition form. Localized data is read from

the resource �le tdevgl.rsc (G).

linking.c L The program connects the di�erent exercise �les with hypertext links as

speci�ed in the input �elds of its world{wide web form. Localized data

is read from the resource �le tdevli.rsc (L).

mailme.c The program enables users to give feedback in form of a questionaire

during the beta{test of the system.

Makefile A standard make�le for compiling the executables from the source code.

news.c As part of the cooperative work tools the program implements a basic

news group for the course. Localized data is read from the resource �le

abnews.rsc.

*.rsc Resource �les which set the environment variables of the Tootsie devel-

opment system. These variables are used to localize the Tootsie devel-

opment and tutorial system.

.

B.1.2 User Interface and System Files

Table B.2: User Interface and System Files of the Tootsie Development System.

System File Comments

tdev10.htm The �le is the start page of the Tootsie development system. Two independent

sections of the browser window, which are called frames, are build up and the

�les tdev11.htm and tdev12.htm are loaded into these.

tdev11.htm It stores the table of contents of the development system. In order to create

exercises etc. for a tutorial system the developer should follow each link from

top to bottom.

tdev12.htm This page gives information about the current version of the development

system.

tdev20.htm An overview page with detailed instructions on how to create exercises for the

tutorial system. It also contains further links to the individual input forms of

the di�erent exercise types.

tdev21.htm to

tdev24.htm

Basically a single HTML �le for displaying two browser frames. The �rst one

is used for the various input forms, whereas the other one shows the overview

table of created exercises, which are stored in tdevex.htm.

tdev25.htm to

tdev28.htm

These contain the input forms for the di�erent exercise types.

tdev30.htm Two frames are de�ned by tdev30.htm. One shows an input form for glossary

keywords, the other one the overview table of existing glossary entries, which

is stored in tdevgl.htm.

tdev31.htm It displays an input form for glossary keywords.

tdev40.htm Two frames are de�ned in order to display the �les tdev41.htm and

tdevex.htm.

tdev41.htm This input form must be used to connect exercises with hypertext links.

tdev50.htm Firstly the overview table of existing hypertext links, which is stored in �le

tdevlk.htm, is displayed. Secondly, the �le tdevex.htm is loaded to enable

system developers to access exercises and check their appearnace by selecting

the View link.

. . .

92 Tootsie Tutorial System [Section B.2]

. . .

System �le Comments

tdev60.htm Two frames are de�ned in order to display the two �les tdev61.htm and

tdevsc.htm that are necessary to generate the table of contents for a tuto-

rial system. The �rst frame contains the input form, whereas the second one

shows the overview table of existing exercise sections.

tdev61.htm The input form for creating a table of contents.

tdev70.htm As the tutorial system is using Cookies to store information on the student's

progress, it is necessary to give the students access to the Cookie values. The

�le tdev70.htm shows an overview of all possibilities that exist in order to

modify Cookies.

tdev71.htm to

tdev73.htm

These HTML pages enable students to change Cookie data.

tdev80.htm Generally, if the developer clicks on help, a JavaScript procedure is called to �nd

out, what input form or HTML page is currently displayed in the world{wide

web browser. However, if this does not work, i.e. the help link is case{insensitive,

the �le tdev80.htm is loaded instead.

tdev81.htm to

tdev89.htm

These �les contain the help pages for the development system. If the help link

is case{sensitive, one of these �les will be shown immediately, otherwise the

developer must select them from tdev80.htm.

tdevex.htm It stores the overview table of created exercises whose entries consist of a title,

HTML �lename, di�culty level, and exercise type.

tdevgl.htm It stores the overview table of glossary terms whose entries consist of a glossary

keyword, HTML �lename, and title.

tdevlk.htm It stores the overview table of existing hypertext links whose entries consist of

the title of the source �le and the titles of the succeeding exercises.

tdevsc.htm It stores the overview table of exercise sections whose entries consist of a title for

each section, a path portion which is relative to the root directory, the di�culty

levels, and the Cookie index which is either increased for each marked section

or 0 otherwise.

tdev?t.htm Files with the pattern tdev?t.htm are generally used for exercise templates.

Templates can be edited by the developer and represent the layout of an exer-

cise. Whenever the developer creates an exercise by �lling out the appropriate

HTML form, the tokens of the template are replaced by the contents of that

form. For this operation the token names must be de�ned in the resource �les.

.

B.2 Tootsie Tutorial System

B.2.1 User Interface and Work Files

Table B.3: User Interface and Work Files of the Tootsie Tutorial System.

Work File Comments

abchat?.htm These �les are used by the chat program, a tool that is designed to o�er a

synchronous cooperative work environment.

abemail.htm It is recommended to list the email addresses of all the people who are currently

involved in the design of a course in this �le.

abfirst.htm The �le abfirst.htm is an on{line assistant, called exercise wizard, which sug-

gests or recommends exercises which the student should do next. It is displayed

whenever a registered student clicks on start in the welcome page abwillk.htm

or selects \exercise wizard" from the menu.

. . .

[Appendix B] Tutorial System Source Files 93

. . .

Work File Comments

abfrage.htm It contains a questionaire for evaluating the tutorial system. The student who

answers the questions does not have to enter an email address, so he can choose

whether the mail is sent anonymously or not.

abframe.htm The start page of the tutorial system. It de�nes four frames within the browser

window: \lightgrey" is reserved for the table of contents, \darkgrey" for help

texts and glossary terms, \black" for menu items and \white" for exercises.

abgloss.htm If abframe.htm is loaded it will also display abgloss.htm which contains an

introductory text for the \darkgrey" frame .

abhilfe.htm It contains a case{insensitive help page which is displayed if the �le in the white

frame is not recognized by the JavaScript function, which is called when the

help link is selected by the student.

abinhal.htm It contains the table of contents of the tutorial system. Modi�cations should

only be made by using the Tootsie development system.

abmenue.htm It displayes the menu items of the tutorial system.

abnewus.htm A new student must sign{in �rst before he can use the tutorial system. However,

he is not only asked to enter his name, but also to answer a few questions in

order to derive his current knowledge state. For each ticked box the user gets

a certain amount of points as de�ned in the variable level. The �nal result

is divided by the maximum amount of points and the di�culty level for the

following exercises is set accordingly.

abwillk.htm It contains the �rst page of the tutorial system. Basically it is responsible to

reset the Cookie values for a new session.

hi*.htm These �les contain the case{sensitive help text of the tutorial system.

nw*.htm These �les are used by the newsgroup program. The �le nwdummy.htm is needed

to force the browser to display the news input form after the list of posted

messages has been loaded.

.

B.2.2 Add{On

Add{ons are programs which are not essential for the operation of the tutorial system itself, however they

can support the student in problem solving. For example, if a pocket calculator is integrated into the tu-

torial system, the student will not have to leave the work area, so consequently distractions can be avoided.

Table B.4: Add{On Files of the Tootsie Tutorial System.

Add{On File Comments

stdvert.htm A sample tool that allows the students to look up the values of the standard

distribution.

taschre.htm A sample pocket calculator with the arithmetic functions +, -, *, and \.

AppendixC

Example for Creating an Exercise

The following example shows the various steps which are required for generating an exercise with the

Tootsie development system. For a detailed description of the input forms and their elements see Chapter

4.2, however it is recommended to start the development system and try the examples.

C.1 Generate Glossary

1. Keyword: Diana

The keyword Diana is automatically referenced in an exercise text if it is delimited by white{space

characters. As a consequence a hypertext link will not be set for a keyword which is followed

by punctuation character like \.", \," etc. The �lename of a keyword consists of the following

components: g for \glossary", the �rst four letters of the keyword, and a three digit number (for

example, gdian000.htm).

2. Title: Diana Tutorial System

3. Explanation

The last input box is used to describe the aforementioned keyword. The text must be structured

by HTML commands.

<P ALIGN=LEFT>

<A HREF="http://bayes.stat.washington.edu/diagnoser/diagnoser.html"

TARGET="_top">Diagnostic Instructional Aid for Noetic Advancement

</P>

After clicking on Generate... the glossary �le is written, and the keyword is listed in the overview

table.

C.2 Generate Exercise

The following example is based on the form \single{correct multiple{choice{question".

1. Title: Bayes, 1. Question

From the section name Bayes a subdirectory bayes is created in which the exercise group 1.

Question is stored. The �lenames of an exercise group consist of the following components: a

for \exercise", the �rst six letters of the group name (excluding white{space and punctuation

characters), and the di�culty level (for example, a1quest1.htm).

94

[Appendix C] Example for Creating an Exercise 95

2. Glossary keywords: Diana

Glossary keywords are entered in form of a comma{separated list which speci�es the terms that

the development system must look for in the exercise text. If these terms are found, hypertext

links will automatically be set to the �les containing the glossary de�nitions.

3. Help text

The format for entering help texts is #<levels>#<text>. If the input box is left empty by the

system developer, a help button will not be displayed in the current exercise.

#1#

<P ALIGN=LEFT>This is the help text for help level 1.</P>

#23#

<P ALIGN=LEFT>This is the help text for help levels 2 and 3.</P>

#5#

<P ALIGN=LEFT>This is the help text for help level 5.</P>

For help level 4 a help text is not de�ned, so instead a default text, which must be set in the

resource �le, is used. The help �lenames consist of the following components: h for \help", the �rst

six letters of the exercise group name, and the help level (for example, h1quest1.htm). This also

means that for every page of an exercise group the same help texts must be entered as otherwise

the existing help �les will be overwritten (please note that help texts are de�ned for an exercise

group, but not for a single exercise).

4. Exercise text

An exercise text, which is structured with the help of HTML commands, must be entered. If the

aforementioned glossary keyword Diana appears inside the text, a hypertext link will automatically

be set to the appropriate glossary �le.

5. Answers

Up to �ve answers can be entered from which the student will have to select one. The correct

answer must be ticked by the system developer.

6. Di�culty level: 1 (trivial)

7. Marked: yes

Marked exercises are stored in the Cookie variables and can be controlled by the tutorial system.

Typical examples are:

� tootsie info, for example: acbd

Each exercise group is represented by a single letter, whose character value encodes which

di�culty levels of an exercise group are correctly solved by the student. If a learner accesses

the tutorial system for the �rst time, the letters of the marked exercise groups are set to a.

Whenever an exercise is solved from that moment on, its di�culty level speci�es which bit of

a binary word of �ve bits is set to 1. The word and the binary value of the current letter are

connected by the logical connective or, and the result is again stored in the Cookie variable

tootsie info. According to the example the di�culty levels 1 and 2 of the exercise group 2,

i.e. c, are correctly solved by the student.

� tootsie nexe, for example: aceabccdaa

A block of �ve letters represents one exercise group, where each di�culty level of the group,

i.e. a single exercise, is symbolised by one letter. At the beginning of a course all letters are set

to the default value a. Whenever the user accesses an exercise, the binary value of the letter is

increased by one and again stored in tootsie nexe. According to the example, from exercise

group 1, i.e. aceab, the exercise with the di�culty level 2, i.e. c, was accessed three times,

while the exercise with di�culty level 5, i.e. b, was only once loaded by the student.

96 Generate Links [Section C.3]

After clicking on Generate... the exercise �le is created and listed in the overview table of saved exercises.

C.3 Generate Links

Hypertext links must be set between exercises, so students can access the course pages. In this respect

the overview table of saved exercises is used to copy exercise data into an internal clipboard by selecting

a Copy link. This data is written into the entry �elds whenever the system developers click on a command

button.

1. Exercise

After the system developer has selected the Copy link of the exercise Bayes, 1. Question

1

, whose

di�culty level is denoted by the superscript 1, and clicked on Page, the text entry �eld contains

the following data: Bayes, 1. Question (single-correct, bayes/a1quest1.htm).

2. Rules

The link rules specify which exercise is loaded next after the student has clicked on the Continue...

button of the current exercise. Before a command button can be used the Copy link of an exercise

must be selected, so the relevant data is stored in the internal clipboard of the development system.

Only the buttons Page and Group set links to exercises, so each code section must end with a link

command, as in the following example:

if (correct)

link(bayes/a11ques);

else if (item[2])

link(bayes/a11ques3.htm);

else

{

reset(bayes/a11ques3.htm);

link(bayes/a11ques3.htm);

}

If the student solves the current exercise Bayes, 1. Question a page from the exercise group

bayes/a11ques is loaded, where the exact �le depends on the current di�culty level. If the third

answer is selected | the index numbers for item start with 0 | the page bayes/a11ques3.htm is

presented to the learner. Otherwise the Cookie value of exercise bayes/a11ques3.htm is set from

\correctly solved" to \not done yet" followed by a link to exercise bayes/a11ques3.htm.

3. Comments

The format for entering comments and feedback, which are displayed on consecutive pages of

the current exercise, is: #link(<filename>);#<text>. The Page button is again responsible for

placing a link between the # delimiters as the following example shows:

#link(bayes/a1quest5.htm);#

Comment displayed on page "Bayes, 1. Question (level 5)" if the current

exercise is correctly solved.

#link(bayes/a11ques3.htm);#

Comment displayed on page "Bayes, 1.1. Question (level 3)" if the

current exercise is correctly solved.

The comments are not source{speci�c, so they are displayed whenever the previous exercise was

correctly solved. Please note that this feedback method cannot be applied for exercises in which

a wrong answer was given by the students. In this case \hints{and{feedback" exercises should be

used instead.

Clicking on Generate... changes the speci�ed exercise �les.

[Appendix C] Example for Creating an Exercise 97

C.4 Generate Table of Contents

The input form shows a single text entry box in which the structure of the table of contents can be

entered in form of HTML commands. Content entries are added by selecting the Copy link of a listed

exercise group and clicking on the Page command button. Example:

<P ALIGN=LEFT>The Bayesian Laws</P>

link(bayes/a1quest);

link(bayes/a11ques);

<P ALIGN=LEFT>End</P>

In the resulting table of contents the link lines are replaced by a radio button and an abbreviated group

name of the speci�ed exercise group.

AppendixD

Glossary

ACT

Adaptive control of thought.

API

Application programming interface.

AWT

Abstract windowing toolkit.

behaviorism

\[. . .] a movement in psychology that advocates the use of strict experimental procedures

to study observable behavior (or responses) in relation to the environment (or stimuli)

([Softkey Interational, 1996])".

CGI

Common gateway interface.

CL{HTTP

Common Lisp hypertext transfer protocol.

CLIM

Common Lisp interface manager.

CLOS

Common Lisp object system.

constructivism

Knowledge is not a representation of an external reality, but the result of perception. Constructivism

emphasizes the active interpretation of objects by the student, and the meaningful construction

of knowledge by learning{by{doing and criticism than by listening (see [Schulmeister, 1997],

pp73/74).

CORBA

Common object request broker architecture.

CSS

Cascading style sheets.

DIANA

Diagnostic instructional aid for Noetic advancement.

ELM{ART

Episodic learner model adaptive remote tutor.

epistemology

\[. . .] the study or a theory of the nature and grounds of knowledge esp. with reference to its limits

and validity ([Softkey Interational, 1996])".

GUI

Graphical user interface.

98

[Appendix D] Glossary 99

hermeneutical

\[. . .] interpretative ([Softkey Interational, 1996])".

HTML

Hypertext mark{up language.

HTTP

Hypertext transfer protocol.

JDBC

Java database connectivity.

MIME

Multipurpose internet mail extension.

M.I.T.

Massachusetts Institute of Technology.

OLE

Object linking and embedding.

POP

here: PUSH operational prototype.

PUSH

Plan and user sensitive help.

rei�cation

The process or result of regarding something abstract as a material or concrete thing (see

[Softkey Interational, 1996]).

SDP

System Development Process.

serendipity

\[. . .] the faculty or phenomenon of �nding valuable or agreeable things not sought for

([Softkey Interational, 1996])".

SQL

Systematic query language.

URL

Universal resource location.

W3C

World{wide web consortium.

W3P

World{wide web presentation system.

WWW

World{wide web.

AppendixE

Figures

These two �gures are actual screenshots of the Tootsie development system and a sample tutorial system.

The latter is similar to the implementation mentioned in Section 4.3.3. Both screenshots were taken from

Netscape Navigator 3.04 running on a Hewlett{Packard Series 700 workstation under HP{UX B.10.20,

so the layout of the system depends on the used system con�guration and world{wide web browser

version. They may di�er from other platforms.

In general, the layout and the user interface of the Tootsie system components are similarly designed, so

all the available forms and exercise screens, which are described in Sections 4.2 and 4.3 in detail, are not

presented.

100

[Appendix E] Figures 101

Figure E.1: The exercises of a course must be linked together to form a coherent information space.

For that the Copy link of the overview table is especially important, because in conjunction with the

prede�ned command buttons the correct data is then �lled into the entry �elds. The example shows that

any JavaScript code can be entered into the \rules �eld": if the student correctly solves the exercise

Bayes, 1. Question, a page from the exercise group bayes/a1quest is loaded depending on the

current di�culty level. Otherwise, if the third answer is selected | the index numbers for item start

with 0 | the page bayes/a1quest3.htm is next, or the Cookie for exercise bayes/a1quest1.htm is

set from \correctly solved" to \not done yet".

102

Figure E.2: This single{correct single{choice exercise o�ers three possible answers to the student. By

clicking on Continue... the selected answer is processed, and the next page is loaded according to the

JavaScript source code which links the di�erent course documents. The underlined \Diana" hypertext

link marks a glossary keyword, whose de�nition is displayed in the lower section of the browser window.

In addition, a help page for the current exercise is available because a Help button is shown in the

upper right corner of the white frame. The two buttons under \Di�culty Level" respectively decrease or

increase the di�culty level. This will however only e�ect the following exercises, provided that an exercise

for the selected di�culty level exists. The table of contents is set to annotated or I suggest, so the

tutorial system recommends exercises to the learner with the help of di�erent font styles. These styles

can also be combined: for example, an exercise title written in bold and italic face denotes a page which

was once solved by the student, but wrongly answered in the following sessions. The system therefore

assumes that this exercise is especially di�cult for the learner.

Bibliography 103

Bibliography

[Anderson, 1996]

Anderson J. R., Kognitive Psychologie, 2. Au
age.

Spektrum Akademischer Verlag, Heidelberg, 1996.

[Anderson et al., 1995]

Anderson J. R., Corbett A., Koedinger K., Pelletier R., Cognitive Tutors: Lessons Learned.

http://act.psy.cmu.edu/ACT/papers/Lessons Learned{abs.html, 1995.

[Andrews, 1996]

Andrews K., HyperWave: The Next Generation Web Server.

http://wksun2.wk.or.at:8000/0x811b9908 0x00251dce;sk=620A0EA1, 1996.

[Astleitner, 1996]

Astleitner H., Lernen in Informationsnetzen.

Habilitationsschrift, Institut f�ur Erziehungswissenschaften, Salzburg, 1996.

[Asymetrix, 1997]

Asymetrix Toolbook, Features of Asymetrix Toolbook.

http://www.asymetrix.com/products/toolbook2/, 1997.

[Brusilovsky & Pesin, 1996]

Brusilovsky P., Pesin L., ISIS{Tutor: An Intelligent Learning Environment for CDS/ISIS Users.

http://cs.joensuu.�/~mtuki/www clc.270296/Brusilov.html, 1996.

[Burns, 1997]

Burns J., So You Want to Layer, Huh?

http://www.htmlgoodies.com/, 1997.

[December Communciatons, 1997]

December Communications Inc., Environment Variables for Use in Gateway Programming.

http://www.december.com/html/spec/envvars.html, 1997.

[December, 1997]

December J., Level 4 HTML Summary.

http://www.december.com/html/spec/level4.html, 1997.

[Digital Think, 1997]

Digital Think Orientation, The DigitalThink Training Method.

http://www.digitalthink.com/, 1997.

[D

�

oring, 1996]

D�oring N., Lernen und Lehren im Netz.

http://www.cs.tu{berlin.de/~doering/, 1996.

[Eastmond & Granger, 1997]

Eastmond D., Granger D., Reaching Distance Students with Computer Network Technology

(Part I).

http://distance{educator.com/Reaching{1.2.html, 1997.

[Eberl & Jacobsen, 1997]

Eberl M., Jacobsen J., Macromedia Director 5 f�ur Insider.

SAMS, Haar bei M�unchen, 1997.

104 Bibliography

[Espinoza & H

�

o

�

ok, 1996]

Espinoza F., H�o�ok K., An Interactive WWW Interface to an Adaptive Information System.

http://www.sics.se/~espinoza/, 1996.

[Espinoza, 1996]

Espinoza F., A World Wide Web Based Presentation System For An Adaptive Help System.

Uppsala University Computer Science Department, Uppsala, 1996.

[Faber, 1993]

Faber W., Hypermediale Lernsysteme.

http://aia.wu{wien.ac.at/Publikationen/Faber/WU{JT.html, 1993.

[Flanagan, 1996]

Flanagan D., Java in a Nutshell.

O'Reilly & Associates Inc., Camebridge, 1996.

[Furman & Isaacs, 1997]

Furman S., Isaacs S., Positioning HTML Elements with Cascading Style Sheets.

http://www.w3.org/TR/WD{positioning{19970819, 1997.

[Gonschorek, 1997]

Gonschorek M., Intelligente Lehrsysteme | Ein

�

Uberblick.

Institut f�ur Informatik, Informatik I (Hauptseminar Intelligente Lehrsysteme), Technische Uni-

versit�at M�unchen, M�unchen, 1997.

[Hall et al., 1996]

Hall W., Davis H., Hutchings G., Rethinking Hypermedia | The Microcosm Approach.

Kluwer Academic Publishers, Dordrecht, 1996.

[Handke, 1997]

Handke J., Multimedia mit ToolBook und Macromedia Director.

Oldenbourg, M�unchen, 1997.

[Harrer, 1996]

Harrer A., Ein didaktisches Konzept f�ur die Lernerf�uhrung in einem intelligenten Lehrsystem.

Institut f�ur Informatik, Informatik I (Diplomarbeit), Technische Universit�at M�unchen, M�unchen,

1996.

[Heath, 1996]

Heath S., Multimedia & Communications Technology.

Focal Press, London, 1996.

[Herzog, 1996]

Herzog C., SYPROS: Ein intelligentes Lehrsystem f�ur die Synchronisation paralleler Prozesse

mit Semaphoren.

Institut f�ur Informatik, Informatik I (Kolloquiumsvortrag Duisburg), Technische Universit�at

M�unchen, M�unchen, 1996.

[H

�

o

�

ok, 1996]

H�o�ok K., Plan{ and User Sensitive Help (P.U.S.H.).

http://www.sics.se/uacm/push.html, 1996.

[H

�

uskes, 1997]

H�uskes R., Schnittmuster f�ur Web{Schneider.

c't 1997, Heft 12 (pp240{245), Hannover, 1997.

[Internet Engineering Task Force, 1997]

Internet Engineering Task Force, Hypertext Transfer Protocol HTTP/1.1 (draft).

http://www.w3.org/Protocols/History.html, 1997.

[Kaiser & Kaiser, 1994]

Kaiser A., Kaiser R., Studienbuch P�adagogik { Grund{ und Pr�ufungswissen, 7. Au
age.

Cornelsen Scriptor, Frankfurt, 1994.

Bibliography 105

[Keith, 1997]

Keith D., LISP Lecture Notes.

http://www.i�.ntnu.no/~keithd/classes/lisp/lectures/l1/index.htm, 1997.

[Kleinschroth, 1996]

Kleinschroth R., Neues Lernen mit dem Computer.

rororo, 1996.

[Kopka, 1994]

Kopka H., L

A

T

E

X Einf�uhrung Band 1.

Addison{Wesley (Deutschland), Bonn, 1994.

[Lai et al., 1995]

Lai M., Chen B., Yuan S., Toward A New Educational Environment.

http://www.w3.org/Conferences/WWW4/Papers/238/, 1995.

[Lie & Bos, 1996]

Lie H., Bos B., Cascading Style Sheets {Level 1.

http://www.w3.org/pub/WWW/TR/REC{CSS1, 1996.

[Madigan et al., 1995]

Madigan D., Clarkson D., Donnell D., Hunt E., Keim M., Minstrell J., Nason M., Scha�ner A.,

Volinsky C., Facet{based Learning for Statistics.

http://www.stat.washington.edu/andrew/fbl.html, 1995.

[Mallery, 1997]

Mallery J., Common Lisp HTTP Server Homepage.

http://www.ai.mit.edu/projects/iiip/doc/cl{http/home{page.html, 1997.

[Mallery, 1994]

Mallery J., A Common LISP Hypermedia Server.

Proceeding of The First International Conference on The World{Wide Web, Geneva, 1994.

[Netscape Developer, 1997]

Netscape Developer, General Developer Documentation.

http://developer.netscape.com/library/documentation/index.html, 1997.

[Netscape Developer, 1997a]

Netscape Developer, JavaScript Documentation.

http://developer.netscape.com/, 1997.

[Netscape Developer, 1997b]

Netscape Developer, Plug{in Basics.

http://developer.netscape.com/library/documentation/communicator/plugin/, 1997.

[Netscape Developer, 1997c]

Netscape Developer, Dynamic Documents.

http://developer.netscape.com/library/documentation/communicator/dynhtml/index.htm, 1997.

[Netscape Developer, 1997d]

Netscape Developer, LiveConnect.

http://home.netscape.com/comprod/products/navigator/version 3.0/building blocks/liveconnect/

how.html, 1997.

[Netscape Developer, 1997e]

Netscape Developer, Persistent Client State HTTP Cookies.

http://developer.netscape.com/library/documentation/index.html, 1997.

[Nistor & Mandl, 1995]

Nistor N., Mandl H., Lernen in Computernetzwerken. Erfahrungen mit einem virtuellen Seminar

(Forschungsbericht 64).

Ludwig{Maximilians{Universit�at, Lehrstuhl f�ur Empirische P�adagogik und P�adagogische Psy-

chologie, M�unchen, 1995.

106 Bibliography

[Ping{Jer et al., 1996]

Ping{Jer Y., Bih{Horng C., Ming{Chih L., Shyan{Ming Y., Synchronous Navigation Control

for Distance Learning on the Web.

http://www5conf.inria.fr/�ch html/papers/P28/Overview.html, 1996.

[Polson & Richardson, 1988]

Polson M. C., Richardson J. J., Foundations of Intelligent Tutoring Systems.

Lawrence Erlbaum Associates Publishers, Hillsdale NJ, 1988.

[Powersim Corporation, 1997]

Powersim Corporation, Powersim Metro JX.

http://www.powersim.no/, 1997.

[Raggett et al., 1997]

Raggett D., Le Hors A., Jacobs I., HTML 4.0 Speci�cation.

http://www.w3.org/TR/WD{html40{970917/, 1997.

[Reinhardt & Schewe, 1995]

Reinhardt B., Schewe S., A Shell for Intelligent Tutoring Systems.

http://ki{server.informatik.uni{wuerzburg.de/HTMLs/ls6{info/Publikationen/95/Reinhardt{AI{

ED95/Reinhardt{AI{ED95.doc.html, 1995.

[Reinmann{Rothmeier & Mandl, 1995]

Reinmann{Rothmeier G., Mandl H., Auf dem Weg ins Informationszeitalter? Was Wirtschaft,

Politik und

�

O�entlichkeit bewegt und auf die Bildung zukommt (Forschungsbericht 54).

Ludwig{Maximilians{Universit�at, Lehrstuhl f�ur Empirische P�adagogik und P�adagogische Psy-

chologie, M�unchen, 1995.

[Sackl, 1997]

Sackl R., Computergest�utzte Kommunikation f�ur verteilte Lerngruppen in der Vorlesung 2000

Umgebung und prototypische Implementierung in Java.

Institut f�ur Informatik, Informatik XI (Diplomarbeit), Technische Universit�at M�unchen,

M�unchen, 1997.

[Schaffner et al., 1996]

Scha�ner A., Madigan D., Donnell D., Hunt E., Keim M., Minstrell J., Nason M., Volinsky C.,

Benchmarks, Facets and the World{Wide Web: Tools for the Advancements of Undergraduate

Statistics Education.

http://www.stat.washington.edu/andrew/fbl.html, 1996.

[Schulmeister, 1997]

Schulmeister R., Grundlagen hypermedialer Lernsysteme, 2. Au
age.

Oldenbourg, M�unchen, 1997.

[Schult, 1996]

Schult T., Computer Based Training.

c't 1996, Heft 9 (p. 178{186), Hannover, 1996.

[Seidel, 1993]

Seidel C., Computer Based Training.

Verlag f�ur angewandte Psychologie, Verlagsgruppe Hogrefe, G�ottingen, 1993.

[Softkey Interational, 1996]

Softkey International, Infopedia 2 | The Ultimate Multimedia Encyclopedia and Reference

Library.

Softkey International, Infopedia Version Release R11, 1996.

[Spada, 1992]

Spada H. (publ.), Allgemeine Psychologie, 2. Au
age.

Verlag Hans Huber, Bern, 1992.

Bibliography 107

[Sun Microsystems, 1997]

Sun Microsystems Inc., JDK 1.1.1 Documentation.

http://java.sun.com/, 1997.

[Sun Microsystems, 1998a]

Sun Microsystems Inc., What is Swing?

http://java.sun.com/products/jfc/swingdoc{current/what is swing.html, 1998.

[Sun Microsystems, 1998b]

Sun Microsystems Inc., Frequently Asked Questions | Java Security.

http://java.sun.com/sfaq/index.html, 1998.

[Taubenberger, 1997]

Taubenberger M., Entwicklung einer adaptiven Erklr�arungskomponente f�ur das intelligente

Lehrsystem POINTRA unter Ber�ucksichtigung von L�osungsvarianten.

Institut f�ur Informatik, Informatik I (Diplomarbeit), Technische Universit�at M�unchen, M�unchen,

1997.

[Weber & Specht, 1997]

Weber G., Specht M., User Modeling and Adaptive Navigation Support in WWW{based Tutor-

ing Systems.

Proceeding of User Modeling '97, Cagliari, 1997.

[Weinert & Mandl, 1997]

Weinert F., Mandl H. (publ.), Psychologie der Erwachsenenbildung. Enzyklop�adie der Psycholo-

gie, Band 4, 11. Kapitel.

Verlagsgruppe Hogrefe, G�ottingen, 1997.

[Welsch, 1996]

Welsch N., Entwicklung von Multimedia{Projekten mit Macromedia Director und Lingo.

Springer{Verlag, Berlin, 1996.

[Wenger, 1987]

Wenger E., Arti�cial Intelligence and Tutoring Systems.

Morgan{Kaufmann, Los Altos, 1987.

Reinhard Scha�ner

Concepts for the Implementation

of Tutorial Systems

in HTML and Java

Diplomarbeit

1998

a a a a

a

a

a

a

a

a

a

a

a

a

a

a

a a a

a

Technische Universit�at M�unchen

Fakult�at f�ur Informatik

